Contents

1. **Description of the methods** .. 2
1.2 **Installation** .. 3
1.3 **Command line tools** ... 7
1.4 **Using the WDL pipelines** .. 86
1.5 **Using the Snakemake pipelines** .. 86
1.1 Description of the methods

1. demultiplex pooled samples (Picard)

2. deplete human reads and/or extract viral reads (BMinagger, BLAST, etc)

3. metagenomic reports (Kraken, Diamond, Krona)

Customizable viral assembly

4. de novo assembly of viral reads (Trinity)

5. scaffold contigs to reference genome (MUMmer)

6. map reads and refine assembly [twice] (Novoalign)
1.1.1 Taxonomic read filtration

Human, contaminant, and duplicate read removal

The assembly pipeline begins by depleting paired-end reads from each sample of human and other contaminants using BMTAGGER and BLASTN, and removing PCR duplicates using M-Vicuna (a custom version of Vicuna).

Taxonomic selection

Reads are then filtered to to a genus-level database using LASTAL, quality-trimmed with Trimmomatic, and further deduplicated with PRINSEQ.

1.1.2 Viral genome analysis

Viral genome assembly

The filtered and trimmed reads are subsampled to at most 100,000 pairs. de novo assembly is performed using Trinity. SPAdes is also offered as an alternative de novo assembler. Reference-assisted assembly improvements follow (contig scaffolding, orienting, etc.) with MUMMER and MUSCLE or MAFFT. Gap2Seq is used to seal gaps between scaffolded de novo contigs with sequencing reads.

Each sample’s reads are aligned to its de novo assembly using Novoalign and any remaining duplicates were removed using Picard MarkDuplicates. Variant positions in each assembly were identified using GATK IndelRealigner and UnifiedGenotyper on the read alignments. The assembly was refined to represent the major allele at each variant site, and any positions supported by fewer than three reads were changed to N.

This align-call-refine cycle is iterated twice, to minimize reference bias in the assembly.

Intrahost variant identification

Intrahost variants (iSNVs) were called from each sample’s read alignments using V-Phaser2 and subjected to an initial set of filters: variant calls with fewer than five forward or reverse reads or more than a 10-fold strand bias were eliminated. iSNVs were also removed if there was more than a five-fold difference between the strand bias of the variant call and the strand bias of the reference call. Variant calls that passed these filters were additionally subjected to a 0.5% frequency filter. The final list of iSNVs contains only variant calls that passed all filters in two separate library preparations. These files infer 100% allele frequencies for all samples at an iSNV position where there was no intra-host variation within the sample, but a clear consensus call during assembly. Annotations are computed with snpEff.

1.1.3 Taxonomic read identification

Metagenomic classifiers include Kraken and Diamond. In each case, results are visualized with Krona.

1.2 Installation

1.2.1 Cloud compute implementations
Docker Images

To facilitate cloud compute deployments, we publish a complete Docker image with associated dependencies to the Docker registry at quay.io. Simply `docker pull quay.io/broadinstitute/viral-ngs` for the latest stable version.

DNAnexus

This assembly pipeline is also available via the DNAnexus cloud platform. RNA paired-end reads from either HiSeq or MiSeq instruments can be securely uploaded in FASTQ or BAM format and processed through the pipeline using graphical and command-line interfaces. Instructions for the cloud analysis pipeline are available at https://github.com/dnanexus/viral-ngs/wiki

The latest versions of viral-ngs are available on DNAnexus within the project here: https://platform.dnanexus.com/projects/F8PQ6380xf5bK0Qk0YPjB17P/data/build/quay.io/broadinstitute/viral-ngs

Google Cloud Platform: deploy to GCE VM

The docker image referenced above can be directly deployed to a Google Compute Engine VM on startup. The main things you will need to do are:

- Make sure to allocate a larger-than-default root disk for the VM. Google’s Container Optimized OS defaults to a very small disk which is not large enough to unpack our Docker image. Increase to at least 20GB (or more if you want to localize data).
- When setting up the VM for launch, make sure you open the “Advanced container options” hidden options and select “Allocate a buffer for STDIN” and “Allocate a pseudo-TTY” before launching. Otherwise you won’t be able to ssh into them!
- Sometimes you will need to invoke “bash” manually upon login to get the correct environment.

Google Cloud Platform: dsub

All of the command line functions in viral-ngs are accessible from the docker image and can be invoked directly using `dsub`.

Here is an example invocation of `illumina.py illumina_demux` (replace the project with your GCP project, and the input, output-recursive, and logging parameters with URIs within your GCS buckets):

```bash
dsub --project my-google-project-id --zones "us-central1-*" \
    --image quay.io/broadinstitute/viral-ngs \
    --name illumina_demux \
    --logging gs://mybucket/logs \
    --input FC_TGZ=gs://mybucket/flowcells/160907_M04004_0066_000000000-AJH8U.tar.gz \
    --output-recursive OUTDIR=gs://mybucket/demux \
    --command 'illumina.py illumina_demux $(FC_TGZ) 1 $(OUTDIR)' \
    --min-ram 30 \n    --min-cores 8 \n    --disk-size 2000
```

The speed of disk write and read operations is linearly proportional to the disk size, hitting the maximum disk speed somewhere around 1-8TB (depending on your I/O pattern). See GCE documentation.
1.2.2 Manual Installation

Install Conda

To use viral-ngs, you need to install the Conda package manager which is most easily obtained via the Miniconda Python distribution. Miniconda can be installed on your system without admin privileges.

After installing Miniconda for your platform, be sure to update it:

```
conda update -y conda
```

Configure Conda

The viral-ngs software and its dependencies are distributed through the a channel of the conda package manager. It is necessary to add this channel to the conda config:

```
conda config --add channels r
conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda
conda config --add channels broad-viral
```

Make a conda environment and install viral-ngs

It is recommended to install viral-ngs into its own conda environment. This ensures its dependencies do not interfere with other conda packages installed on your system. A new conda environment can be created with the following command, which will also install conda:

```
conda create -n viral-ngs-env viral-ngs
```

Activate the viral-ngs environment and complete the install

In order to finish installing viral-ngs, you will need to activate its conda environment:

```
source activate viral-ngs-env
```

Due to license restrictions, the viral-ngs conda package cannot distribute and install GATK directly. To fully install GATK, you must download a licensed copy of GATK v3.8 from the Broad Institute, and call “gatk3-register,” which will copy GATK into your viral-ngs conda environment:

```
mkdir -p /path/to/gatk_dir
wget -O - 'https://software.broadinstitute.org/gatk/download/auth?package=GATK-
\archive&version=3.6-0-g89b7209' | tar -xjvC /path/to/gatk_dir

gatk3-register /path/to/gatk_dir/GenomeAnalysisTK.jar
```

The single-threaded version of Novoalign is installed by default. If you have a license for Novoalign to enable multi-threaded operation, viral-ngs will copy it to the viral-ngs conda environment if the NOVOALIGN_LICENSE_PATH environment variable is set. Alternatively, the conda version of Novoalign can be overridden if the NOVOALIGN_PATH environment variable is set. If you obtain a Novoalign license after viral-ngs has already been installed, it can be added to the conda environment by calling:

```
# obtain a Novoalign license file: novoalign.lic
novoalign-license-register /path/to/novoalign.lic
```
Activating viral-ngs once installed

After viral-ngs has been installed, only one command is needed to load the environment and all of its dependencies. This is the command that must be run each time before using viral-ngs:

```
source activate viral-ngs-env
```

To deactivate the conda environment:

```
source deactivate
```

1.2.3 Easy deployment script for viral-ngs

viral-ngs can be deployed with help of a shell script, `easy-deploy/easy-deploy-viral-ngs.sh`. This script will install an independent copy of viral-ngs from the latest source, install all dependencies, and make it simple to activate the viral-ngs environment and create projects. The script is available from the repository broadinstitute/viral-ngs.

After downloading the script and making it executable, viral-ngs can be installed on a 64-bit macOS or Linux system via:

```
./easy-deploy-viral-ngs.sh setup
```

One-line install command

This one-line command will install viral-ngs on a 64-bit macOS or Linux system:

```
wget https://raw.githubusercontent.com/broadinstitute/viral-ngs/master/easy-deploy-script/easy-deploy-viral-ngs.sh && chmod a+x ./easy-deploy-viral-ngs.sh && ./easy-deploy-viral-ngs.sh setup
```

One-line install command for Broad Institute cluster users

This one-line command will download the `easy-deploy-viral-ngs.sh` script and setup viral-ngs in the current working directory. Simply ssh to one of the Broad login nodes and paste this command:

```
wget https://raw.githubusercontent.com/broadinstitute/viral-ngs/master/easy-deploy-script/easy-deploy-viral-ngs.sh && chmod a+x ./easy-deploy-viral-ngs.sh && reuse UGER && qrsh -l h_vmem=10G -cwd -N "viral-ngs_deploy" -q interactive ./easy-deploy-viral-ngs.sh setup
```

Note: The script will run the install on a UGER interactive node, so you must have the ability to create to start a new interactive session. A project can be specified via qrsh `-P <project_name>`

Usage

Installation

- `.easy-deploy-viral-ngs.sh setup` Installs a fresh copy of viral-ngs, installs all dependencies, and creates a directory, `viral-ngs/etc/`, in the current working directory.

Resulting directories:
Activating the environment

- **source ./easy-deploy-viral-ngs.sh load** Loads the dotkits needed by viral-ngs and activates the Python virtual environment

Creating a project directory

- **./easy-deploy-viral-ngs.sh create-project <project_name>** Creates a directory for a new Snakemake-compatible project, with data directories and symlinked run scripts. Copies in the files `Snakefile` and `config.yaml`

Resulting directories:

```
viral-ngs-analysis-software/
    projects/<project_name>/
        Snakefile
        bin/ (symlink)
        config.yaml
        data/
        log/
        reports/
        run-pipe_LSF.sh (symlink)
        run-pipe_UGER.sh (symlink)
        samples-assembly-failures.txt
        samples-assembly.txt
        samples-depletion.txt
        samples-runs.txt
        tmp/
        venv/ (symlink)
        [...other project files...]
```

1.3 Command line tools

1.3.1 metagenomics.py - metagenomic analyses

This script contains a number of utilities for metagenomic analyses.

```text
usage: metagenomics.py subcommand
```

Sub-commands:

- **subset_taxonomy**

 Generate a subset of the taxonomy db files filtered by the whitelist. The whitelist taxids indicate specific taxids plus their parents to add to taxonomy while whitelistTreeTaxids indicate specific taxids plus both parents and all children taxa. Whitelist GI and accessions can only be provided in file form and the resulting gi/accession2taxid files will be filtered to only include those in the whitelist files. Finally, taxids + parents for the gis/accessions will also be included.
usage: metagenomics.py subset_taxonomy [-h]

 (--whitelistTaxids whitelistTaxids)

 (--whitelistTaxidFile whitelistTaxidFile)

 (--whitelistTreeTaxids whitelistTreeTaxids)

 (--whitelistTreeTaxidFile whitelistTreeTaxidFile)

 (--whitelistGiFile whitelistGiFile)

 (--whitelistAccessionFile whitelistAccessionFile)

 (--skipGi=False)

 (--skipAccession=False)

 (--skipDeadAccession=False)

 (--loglevel=INFO)

 (--version, -V)

 (--tmp_dir=/tmp)

 (--tmp_dirKeep=False)

税学数据库目录 (包含 nodes.dmp, parents.dmp 等)。

输出税学数据库目录

选项:

--whitelistTaxids 列表税id添加到税学 (带有父母)

--whitelistTaxidFile 文件包含税id - 每行一个 - 添加到税学与父母。

--whitelistTreeTaxids 列表税id添加到税学 (带有父母和孩子)

--whitelistTreeTaxidFile 文件包含税id - 每行一个 - 添加到税学与父母和孩子。

--whitelistGiFile 文件包含GI - 每行一个 - 添加到税学与nodes。

--whitelistAccessionFile 文件包含accessions - 每行一个 - 添加到税学与nodes。

--skipGi=False 跳过GI to taxid mapping files

--skipAccession=False 跳过accession to taxid mapping files

--skipDeadAccession=False 跳过dead accession to taxid mapping files

--loglevel=INFO 输出的详细程度。[默认: %(default)s]

可能的选择: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V 显示程序的版本号并退出

--tmp_dir=/tmp 基本目录用于临时文件。[默认: %(default)s]

--tmp_dirKeep=False 在运行时出现异常时保留tmp_dir。默认情况下，在运行过程中删除所有临时文件，即使有失败。
krakenuniq

Classify reads by taxon using KrakenUniq

```
usage: metagenomics.py krakenuniq [-h]
      [--outReports OUTREPORTS [OUTREPORTS ...]]
      [--outReads OUTREADS [OUTREADS ...]]
      [--filterThreshold FILTERTHRESHOLD]
      [--threads THREADS]
      [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
      [--version] [--tmp_dir TMP_DIR]
      [--tmp_dirKeep]
      db inBams [inBams ...]
```

Positional arguments:
 db Kraken database directory.
 inBams Input unaligned reads, BAM format.

Options:
 --outReports Kraken summary report output file. Multiple filenames space
 separated.
 --outReads Kraken per read classification output file. Multiple filenames
 space separated.
 --filterThreshold=0.05 Kraken filter threshold (default %(default)s)
 --threads Number of threads (default: all available cores)
 --loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
 --version, -V show program’s version number and exit
 --tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
 --tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.

krona

Create an interactive HTML report from a tabular metagenomic report

```
usage: metagenomics.py krona [-h] [--queryColumn QUERYCOLUMN]
      [--taxidColumn TAXIDCOLUMN]
      [--scoreColumn SCORECOLUMN]
      [--magnitudeColumn MAGNITUDECOLUMN] [--noHits]
      [--noRank] [--inputType {tsv,krakenuniq,kaiju}]
      [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
      [--version]
      inReport db outHtml
```

Positional arguments:
 inReport Input report file (default: tsv)
 db Krona taxonomy database directory.

1.3. Command line tools
outHtml

Output html report.

Options:

- `--queryColumn=2` Column of query id. (default: %(default)s)
- `--taxidColumn=3` Column of taxonomy id. (default: %(default)s)
- `--scoreColumn` Column of score. (default: %(default)s)
- `--magnitudeColumn` Column of magnitude. (default: %(default)s)
- `--noHits=False` Include wedge for no hits.
- `--noRank=False` Include no rank assignments.
- `--inputType=tsv` Handling for specialized report types.
 Possible choices: tsv, krakenuniq, kaiju
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program's version number and exit

kaiju

Classify reads by the taxon of the Lowest Common Ancestor (LCA)

```plaintext
inBam db taxDb outReport
```

Positional arguments:

- `inBam` Input unaligned reads, BAM format.
- `db` Kaiju database .fmi file.
- `taxDb` Taxonomy database directory.
- `outReport` Output taxonomy report.

Options:

- `--outReads` Output LCA assignments for each read.
- `--threads` Number of threads (default: all available cores)
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program's version number and exit
- `--tmp_dir=/tmp` Base directory for temp files. [default: %(default)s]
- `--tmp_dirKeep=False` Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

report_merge

Merge multiple metagenomic reports into a single metagenomic report. Any Krona input files created by this
usage: metagenomics.py report_merge [-h]
 [--outSummaryReport OUT_KRAKEN_SUMMARY]
 [--krakenDB KRAKEN_DB]
 [--outByQueryToTaxonID OUT_KRONA_INPUT]
 [--loglevel
 →(DEBUG,INFO,WARNING,ERROR,Critical,EXCEPTION)]
 [--version] [--tmp_dir TMP_DIR]
 [tmp_dirKeep]
 metagenomic_reports
 [metagenomic_reports ...]

Positional arguments:

 metagenomic_reports Input metagenomic reports with the query ID and taxon ID in
 the 2nd and 3rd columns (Kraken format)

Options:

 --outSummaryReport Path of human-readable metagenomic summary report, cre-
 created by kraken-report

 --krakenDB Kraken database (needed for outSummaryReport)

 --outByQueryToTaxonID Output metagenomic report suitable for Krona input.

 --loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-
 ICAL, EXCEPTION

 --version, -V show program’s version number and exit

 --tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

 --tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.

filter_bam_to_taxa
Filter an (already classified) input bam file to only include reads that have been mapped to specified taxo-

nmatic IDs or scientific names. This requires a classification file, as produced by tools such as Kraken, as
well as the NCBI taxonomy database.

usage: metagenomics.py filter_bam_to_taxa [-h]
 [--taxNames TAX_NAMES [TAX_NAMES ...]]
 [--taxIDs TAX_IDS [TAX_IDS ...]]
 [--without-children]
 [--read_id_col READ_ID_COL]
 [--tax_id_col TAX_ID_COL]
 [--JVMmemory JVMMEMORY]
 [--loglevel
 →(DEBUG,INFO,WARNING,ERROR,Critical,EXCEPTION)]
 [--version] [--tmp_dir TMP_DIR]
 [tmp_dirKeep]
 in_bam read_IDs_to_tax_IDs out_bam
 nodes_dmp names_dmp

Positional arguments:

 in_bam Input bam file.

1.3. Command line tools

11
read IDs to tax IDs
TSV file mapping read IDs to taxIDs, Kraken-format by default. Assumes bijective mapping of read ID to tax ID.

out bam
Output bam file, filtered to the taxa specified

nodes_dmp

names_dmp

Options:

--taxNames
The taxonomic names to include. More than one can be specified. Mapped to Tax IDs by lowercase exact match only. Ex. “Viruses” This is in addition to any taxonomic IDs provided.

--taxIDs
The NCBI taxonomy IDs to include. More than one can be specified. This is in addition to any taxonomic names provided.

--without-children=True
Omit reads classified more specifically than each taxon specified (without this a taxon and its children are included).

--read_id_col=1
The (zero-indexed) number of the column in read_IDs_to_tax_IDs containing read IDs. (default: %default)s

--tax_id_col=2
The (zero-indexed) number of the column in read_IDs_to_tax_IDs containing Taxonomy IDs. (default: %default)s

--JVMmemory=4g
JVM virtual memory size (default: %default)s

--loglevel=INFO
Verboseness of output. [default: %default]s
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program’s version number and exit

--tmp_dir=/tmp
Base directory for temp files. [default: %default]

--tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

taxlevel_summary

Aggregates taxonomic abundance data from multiple Kraken-format summary files. It is intended to report information on a particular taxonomic level (--taxlevelFocus; ex. ‘species’), within a higher-level grouping (--taxHeading; ex. ‘Viruses’). By default, when --taxHeading is at the same level as --taxlevelFocus a summary with lines for each sample is emitted. Otherwise, a histogram is returned. If per-sample information is desired, --noHist can be specified. In per-sample data, the suffix “-pt” indicates percentage, so a value of 0.02 is 0.0002 of the total number of reads for the sample. If --topN is specified, only the top N most abundant taxa are included in the histogram count or per-sample output. If a number is specified for --countThreshold, only taxa with that number of reads (or greater) are included. Full data returned via --jsonOut (filtered by --topN and --countThreshold), whereas --csvOut returns a summary.

```
usage: metagenomics.py taxlevel_summary [-h] [--jsonOut JSON_OUT]  
[--csvOut CSV_OUT]  
[--taxHeading TAX_HEADING [TAX_  
→HEADINGS ...]]  
[--taxlevelFocus TAXLEVEL_FOCUS]  
[--topN TOP_N_ENTRIES]  
[--countThreshold COUNT_THRESHOLD]  
[--zeroFill] [--noHist]
```
Positional arguments:

summary_files_in Kraken-format summary text file with tab-delimited taxonomic levels.

Options:

--jsonOut The path to a json file containing the relevant parsed summary data in json format.

--csvOut The path to a csv file containing sample-specific counts.

--taxHeading=Viruses The taxonomic heading to analyze (default: %(default)s). More than one can be specified.

--taxlevelFocus=species The taxonomic heading to summarize (totals by Genus, etc.) (default: %(default)s).

--topN=100 Only include the top N most abundant taxa by read count (default: %(default)s)

--countThreshold=1 Minimum number of reads to be included (default: %(default)s)

--zeroFill=False When absent from a sample, write zeroes (rather than leaving blank).

--noHist=False Write out a report by-sample rather than a histogram.

--includeRoot=False Include the count of reads at the root level and the unclassified bin.

--loglevel=INFO Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

krakenuniq_build

Builds a krakenuniq database from library directory of fastas and taxonomy db directory. The –subsetTaxonomy option allows shrinking the taxonomy to only include taxids associated with the library folders. For this to work, the library fastas must have the standard accession id names such as ‘>NC1234.1’ or ‘>NC_01234.1’.

Setting the –minimizerLen (default: 16) small, such as 10, will drastically shrink the db size for small inputs, which is useful for testing.

The built db may include symlinks to the original –library / –taxonomy directories. If you want to build a static archiveable version of the library, simply use the –clean option, which will also remove any unnecessary files.
usage: metagenomics.py krakenuniq_build [-h] [--library LIBRARY]
 [--taxonomy TAXONOMY]
 [--subsetTaxonomy]
 [--minimizerLen MINIMIZERLEN]
 [--kmerLen KMERLEN]
 [--maxDbSize MAXDBSIZE] [--clean]
 [--workOnDisk] [--threads THREADS]
 [--loglevel DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep]
 db

Positional arguments:

 db Krakenuniq database output directory.

Options:

 --library Input library directory of fasta files. If not specified, it will be
 read from the “library” subdirectory of “db”.

 --taxonomy Taxonomy db directory. If not specified, it will be read from the
 “taxonomy” subdirectory of “db”.

 --subsetTaxonomy=FALSE Subset taxonomy based on library fastas.

 --minimizerLen Minimizer length (krakenuniq default: 15)

 --kmerLen k-mer length (krakenuniq default: 31)

 --maxDbSize Maximum db size in GB (will shrink if too big)

 --clean=FALSE Clean by deleting other database files after build

 --workOnDisk=FALSE Work on disk instead of RAM. This is generally much slower
 unless the “db” directory lives on a RAM disk.

 --threads Number of threads (default: all available cores)

 --loglevel=INFO Verboseness of output. [default: %(default)s]

 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

 --version, -V show program’s version number and exit

 --tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

 --tmp_dirKeep=FALSE Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.

1.3.2 taxon_filter.py - tools for taxonomic removal or filtration of reads

This script contains a number of utilities for filtering NGS reads based on membership or non-membership in a species / genus / taxonomic grouping.

usage: taxon_filter.py subcommand

Sub-commands:
deplete

Run the entire depletion pipeline: bwa, bmtagger, mvicuna, blastn.

```bash
usage: taxon_filter.py deplete [-h] [--bwaDbs [BWADBS ...]]
    [--bmtaggerDbs [BMTAGGERDBS ...]]
    [--blastDbs [BLASTDBS ...]]
    [--srprismMemory SRPRISM_MEMORY]
    [--chunkSize CHUNKSIZE] [--JVMmemory JVMMEMORY]
    [--clearTags]
    [--tagsToClear TAGS_TO_CLEAR ...]
    [--doNotSanitize] [--threads THREADS]
    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
    [inBam] [revertBam] bwaBam bmtaggerBam rmdupBam blastnBam
```

Positional arguments:

- `inBam` Input BAM file.
- `revertBam` Output BAM: read markup reverted with Picard.
- `bwaBam` Output BAM: depleted of reads with BWA.
- `bmtaggerBam` Output BAM: depleted of reads with BMTagger.
- `rmdupBam` Output BAM: bmtaggerBam run through M-Vicuna duplicate removal.
- `blastnBam` Output BAM: rmdupBam run through another depletion of reads with BLASTN.

Options:

- `--bwaDbs=()` Reference databases for blast to deplete from input.
- `--bmtaggerDbs=()` Reference databases to deplete from input. For each db, requires prior creation of db.bitmask by bmtool, and db.srprism.idx, db.srprism.map, etc. by srprism mkindex.
- `--blastDbs=()` Reference databases for blast to deplete from input.
- `--srprismMemory=7168` Memory for srprism.
- `--chunkSize=1000000` blastn chunk size (default: %(default)s)
- `--JVMmemory=4g` JVM virtual memory size for Picard FilterSamReads (default: %(default)s)
- `--clearTags=False` When supplying an aligned input file, clear the per-read attribute tags
- `--tagsToClear=['XT', 'X0', 'X1', 'XA', 'AM', 'SM', 'BQ', 'CT', 'XN', 'OC', 'OP']` A space-separated list of tags to remove from all reads in the input bam file (default: %(default)s)
- `--doNotSanitize=False` When being reverted, picard’s SANITIZE=true is set unless --doNotSanitize is given. Sanitization is a destructive operation that removes reads so the bam file is consistent. From the picard documentation: ‘Reads discarded include (but are not limited to) paired reads with missing mates, duplicated records, records
with mismatches in length of bases and qualities.’ For more information see: https://broadinstitute.github.io/picard/command-line-overview.html#RevertSam

```
--threads
Number of threads (default: all available cores)

--loglevel=INFO
Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program’s version number and exit

--tmp_dir=/tmp
Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.
```

deplete_human
A wrapper around ‘deplete’; deprecated but preserved for legacy compatibility.

```
usage: taxon_filter.py deplete_human [-h] [-bwaDbs [BWADBS [BWADBS ...]]]
      [-bmtaggerDbs [BMTAGGERDBS [BMTAGGERDBS ...]]]
      [--bwaDbs=()]
      [---bmtaggerDbs=()]
      [---blastDbs=()]
      [---srprismMemory SRPRISM_MEMORY]
      [---chunkSize CHUNKSIZE]
      [---JVMmemory JVMMEMORY]
      [---clearTags]
      [---tagsToClear TAGS_TO_CLEAR [TAGS_TO_CLEAR [[TAGS_TO_CLEAR [...]]]]]
      [---doNotSanitize]
      [---threads THREADS]
      [---loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
      [---version]
      [---tmp_dir TMP_DIR]
      [---tmp_dirKeep]
inBam [revertBam] bwaBam bmtaggerBam rmdupBam blastnBam
```

Positional arguments:

- **inBam** Input BAM file.
- **revertBam** Output BAM: read markup reverted with Picard.
- **bwaBam** Output BAM: depleted of reads with BWA.
- **bmtaggerBam** Output BAM: depleted of reads with BMTagger.
- **rmdupBam** Output BAM: bmtaggerBam run through M-Vicuna duplicate removal.
- **blastnBam** Output BAM: rmdupBam run through another depletion of reads with BLASTN.

Options:

- **--bwaDbs=()** Reference databases for blast to deplete from input.
- **--bmtaggerDbs=()** Reference databases to deplete from input. For each db, requires prior creation of db.bitmask by bmtool, and db.srprism.idx, db.srprism.map, etc. by srprism mkindex.
- **--blastDbs=()** Reference databases for blast to deplete from input.
viral-ngs Documentation, Release v1.25.0-8-ge144969e

--srprismMemory=7168 Memory for srprism.
--chunkSize=1000000 blastn chunk size (default: %(default)s)
--JVMmemory=4g JVM virtual memory size for Picard FilterSamReads (default: %(default)s)
--clearTags=False When supplying an aligned input file, clear the per-read attribute tags
--tagsToClear=['XT', 'X0', 'X1', 'XA', 'AM', 'SM', 'BQ', 'CT', 'XN', 'OC', 'OP']
A space-separated list of tags to remove from all reads in the input bam file (default: %(default)s)
--doNotSanitize=False When being reverted, picard’s SANITIZE=true is set unless
--threads Number of threads (default: all available cores)
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. De-
filter_lastal_bam
Restrict input reads to those that align to the given reference database using LASTAL.

usage: taxon_filter.py filter_lastal_bam [-h]
 [-n MAX_GAPLESS_ALIGNMENTS_PER_POSITION]
 [-l MIN_LENGTH_FOR_INITIAL_MATCHES]
 [-L MAX_LENGTH_FOR_INITIAL_MATCHES]
 [-m MAX_INITIAL_MATCHES_PER_POSITION]
 [--errorOnReadsInNegControl]
 [--negativeControlReadsThreshold]
 [--negativeControlPrefixes [NEG_CONTROL_PREFIXES ...]]
 [--JVMmemory JVMMEMORY]
 [--threads THREADS]
 [--loglevel
 {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 --tmp_dirKeep]
inBam db outBam

1.3. Command line tools 17
deplete_bam_bmtagger

Use bmtagger to deplete input reads against several databases.

```bash
usage: taxon_filter.py deplete_bam_bmtagger [-h]
    [--sr prismMemory SRPRISM_MEMORY]
    [--JVMmemory JVMMEMORY]
    [--clearTags]
    [--tagsToClear TAGS_TO_CLEAR]
    [TAGS_TO_CLEAR ...]
    [--doNotSanitize]
    [--loglevel]
    DEBUG,INFO,WARNING,ERROR,Critical,EXCEPTION]
    [--version] [--tmp_dir TMP_DIR]
    [--tmp_dirKeep]
inBam refDbs [refDbs ...] outBam
```

Positional arguments:

- `inBam` Input BAM file.
refDbs
Reference databases (one or more) to deplete from input. For each db, requires prior creation of db.bitmask by bmtool, and db.srprism.idx, db.srprism.map, etc. by srprism mkindex.

outBam
Output BAM file.

Options:

--srprismMemory=7168
Memory for srprism.

--JVMmemory=4g
JVM virtual memory size (default: %default(s)

--clearTags=False
When supplying an aligned input file, clear the per-read attribute tags

--tagsToClear=['XT', 'X0', 'XI', 'XA', 'AM', 'SM', 'BQ', 'CT', 'XN', 'OC', 'OP']

A space-separated list of tags to remove from all reads in the input bam file (default: %default(s)

--doNotSanitize=False
When being reverted, picard’s SANITIZE=true is set unless –doNotSanitize is given. Sanitization is a destructive operation that removes reads so the bam file is consistent. From the picard documentation: ‘Reads discarded include (but are not limited to) paired reads with missing mates, duplicated records, records with mismatches in length of bases and qualities.’ For more information see: https://broadinstitute.github.io/picard/command-line-overview.html#RevertSam

--loglevel=INFO
Verboseness of output. [default: %default(s)]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program’s version number and exit

--tmp_dir=/tmp
Base directory for temp files. [default: %default(s)]

--tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

deplete_blastn_bam

Use blastn to remove reads that match at least one of the specified databases.

```bash
usage: taxon_filter.py deplete_blastn_bam [-h] [-c CHUNKSIZE]  
                                              [-m JVMMEMORY]  
                                              [-t]  
                                              --tagsToClear TAGS_TO_CLEAR [TAGS_  
                                              → TO_CLEAR ...]]
                                                      [-d]  
                                                      [-t threads THREADS]  
                                                      [-l loglevel]
                                                      → [DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION]
                                                      [-v] [-d] [-t tmp_dir TMP_DIR]  
                                                      [-k]
                                                      inBam refDbs [refDbs ...] outBam
```

Positional arguments:

inBam
Input BAM file.

refDbs
One or more reference databases for blast. An ephemeral database will be created if a fasta file is provided.
outBam

Options:

--chunkSize=1000000 FASTA chunk size (default: %default)
--JVMmemory=4g JVM virtual memory size (default: %default)
--clearTags=False When supplying an aligned input file, clear the per-read attribute tags
--doNotSanitize=False When being reverted, picard’s SANITIZE=true is set unless –doNotSanitize is given. Sanitization is a destructive operation that removes reads so the bam file is consistent. From the picard documentation: ‘Reads discarded include (but are not limited to) paired reads with missing mates, duplicated records, records with mismatches in length of bases and qualities.’ For more information see: https://broadinstitute.github.io/picard/command-line-overview.html#RevertSam
--threads Number of threads (default: all available cores)
--loglevel=INFO Verboseness of output. [default: %default]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %default]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

deplete_bwa_bam

Use BWA to remove reads that match at least one of the specified databases.

```
usage: taxon_filter.py deplete_bwa_bam [-h] [--clearTags]
    [--tagsToClear TAGS_TO_CLEAR [TAGS_TO_CLEAR ...]]
    [--doNotSanitize]
    [--JVMmemory JVMMEMORY]
    [--threads THREADS]
    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
    [--version] [--tmp_dir TMP_DIR]
    --tmp_dirKeep
    inBam refDbs [refDbs ...] outBam
```

Positional arguments:

inBam Input BAM file.
refDbs One or more reference databases for bwa. An ephemeral database will be created if a fasta file is provided.
outBam Output BAM file with matching reads removed.

Options:
When supplying an aligned input file, clear the per-read attribute tags.

A space-separated list of tags to remove from all reads in the input bam file (default: %(default)s)

When being reverted, picard’s SANITIZE=true is set unless –doNotSanitize is given. Sanitization is a destructive operation that removes reads so the bam file is consistent. From the picard documentation: ‘Reads discarded include (but are not limited to) paired reads with missing mates, duplicated records, records with mismatches in length of bases and qualities.’ For more information see: https://broadinstitute.github.io/picard/command-line-overview.html#RevertSam

JVM virtual memory size (default: %(default)s)

Number of threads (default: all available cores)

Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

show program’s version number and exit

Base directory for temp files. [default: %(default)s]

Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

build a database for use with last based on an input fasta file

```
usage: taxon_filter.py lastal_build_db [-h]
     [--outputFilePrefix OUTPUTFILEPREFIX]
     [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
     [--version] [--tmp_dir TMP_DIR]
     [--tmp_dirKeep]
     inputFasta outputDirectory
```

Positional arguments:

- **inputFasta**: Location of the input FASTA file
- **outputDirectory**: Location for the output files (default is cwd: %(default)s)

Options:

- **--outputFilePrefix**: Prefix for the output file name (default: inputFasta name, sans ".fasta" extension)
- **--loglevel=INFO**: Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V**: show program’s version number and exit
- **--tmp_dir=/tmp**: Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

bwa_build_db
Create a database for use with bwa from an input reference FASTA file

| Positional arguments: |
| inputFasta | Location of the input FASTA file |
| outputDirectory | Location for the output files |
| Options: |
--outputFilePrefix	Prefix for the output file name (default: inputFasta name, sans ".fasta" extension)
--loglevel=INFO	Verboseness of output. [default: %(default)s] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V	show program’s version number and exit
--tmp_dir=/tmp	Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False	Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

blastn_build_db
Create a database for use with blastn from an input reference FASTA file

| Positional arguments: |
| inputFasta | Location of the input FASTA file |
| outputDirectory | Location for the output files |
| Options: |
--outputFilePrefix	Prefix for the output file name (default: inputFasta name, sans ".fasta" extension)
--loglevel=INFO	Verboseness of output. [default: %(default)s] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V	show program’s version number and exit
--tmp_dir=/tmp	Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False	Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

bmtagger_build_db

Create a database for use with Bmtagger from an input FASTA file.

```
usage: taxon_filter.py bmtagger_build_db [-h]
       [---outputFilePrefix OUTPUTFILEPREFIX]  
       [---word_size WORD_SIZE]              
       [---loglevel
           {DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION}
       [--version] [--tmp_dir TMP_DIR]        
       [--tmp_dirKeep] inputFasta outputDirectory
```

Positional arguments:
- **inputFasta**: Location of the input FASTA file
- **outputDirectory**: Location for the output files (Where *.bitmask and *.srprism files will be stored)

Options:
- **--outputFilePrefix**: Prefix for the output file name (default: inputFasta name, sans "fasta" extension)
- **--word_size=18**: Database word size (default: %(default)s)
- **--loglevel=INFO**: Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V**: show program’s version number and exit
- **--tmp_dir=/tmp**: Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False**: Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

1.3.3 assembly.py - *de novo* assembly

This script contains a number of utilities for viral sequence assembly from NGS reads. Primarily used for Lassa and Ebola virus analysis in the Sabeti Lab / Broad Institute Viral Genomics.

```
usage: assembly.py subcommand
```

Sub-commands:
- **trim_rmdup_subsamp**: Take reads through Trimmomatic, Prinseq, and subsampling. This should probably move over to read-utils.
usage: assembly.py trim_rmdup_subsamp [-h] [--n_reads N_READS]
 [---loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [---version] [---tmp_dir TMP_DIR]
 [---tmp_dirKeep]
 inBam clipDb outBam

Positional arguments:

 inBam Input reads, unaligned BAM format.
 clipDb Trimmomatic clip DB.
 outBam Output reads, unaligned BAM format (currently, read groups and
 other header information are destroyed in this process).

Options:

 --n_reads=100000 Subsample reads to no more than this many individual reads.
 Note that paired reads are given priority, and unpaired reads
 are included to reach the count if there are too few paired reads
 to reach n_reads. (default %(default)s)
 --loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL,
 EXCEPTION
 --version, -V show program’s version number and exit
 --tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
 --tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.

assemble_trinity

This step runs the Trinity assembler. First trim reads with trimmomatic, rmdup with prinseq, and random
subsample to no more than 100k reads.

usage: assembly.py assemble_trinity [-h] [--n_reads N_READS]
 [---outReads OUTREADS] [---always_succeed]
 [---JVMmemory JVMMEMORY]
 [---threads THREADS]
 [---loglevel
 [---version] [---tmp_dir TMP_DIR]
 [---tmp_dirKeep]
 inBam clipDb outFasta

Positional arguments:

 inBam Input unaligned reads, BAM format.
 clipDb Trimmomatic clip DB.
 outFasta Output assembly.

Options:

 --n_reads=100000 Subsample reads to no more than this many pairs. (default %(de-
 fault)s)
 --outReads Save the trimmomatic/prinseq/subsamp reads to a BAM file
If Trinity fails (usually because insufficient reads to assemble), emit an empty fasta file as output. Default is to throw a DenovoAssemblyError.

--JVMmemory=4g
JVM virtual memory size (default: %(default)s)

--threads
Number of threads (default: all available cores)

--loglevel=INFO
Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program’s version number and exit

--tmp_dir=/tmp
Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

assemble_spades

De novo RNA-seq assembly with the SPAdes assembler.

```
→{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}] [--version] [--tmp_dir TMP_DIR] [--tmp_dirKeep]
in_bam clip_db out_fasta
```

Positional arguments:

in_bam
Input unaligned reads, BAM format. May include both paired and unpaired reads.

clip_db
Trimmomatic clip db

out_fasta
Output assembled contigs. Note that, since this is RNA-seq assembly, for each assembled genomic region there may be several contigs representing different variants of that region.

Options:

--contigsTrusted
Optional input contigs of high quality, previously assembled from the same sample

--contigsUntrusted
Optional input contigs of high medium quality, previously assembled from the same sample

--nReads=10000000
Before assembly, subsample the reads to at most this many

--outReads
Save the trimmomatic/prinseq/subsamp reads to a BAM file

--filterContigs=False
only output contigs SPAdes is sure of (drop lesser-quality contigs from output)
--alwaysSucceed=False if assembly fails for any reason, output an empty contigs file, rather than failing with an error code
--minContigLen=0 only output contigs longer than this many bp
--spadesOpts= (advanced) Extra flags to pass to the SPAdes assembler
--memLimitGb=4 Max memory to use, in GB (default: %default) s
--threads Number of threads (default: all available cores)
--loglevel=INFO Verboseness of output. [default: %default] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %default]s
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

gapfill_gap2seq

This step runs the Gap2Seq tool to close gaps between contigs in a scaffold.

```
usage: assembly.py gapfill_gap2seq [-h] [--memLimitGb MEM_LIMIT_GB] 
       [--timeSoftLimitMinutes TIME_SOFT_LIMIT_MINUTES] 
       [--maskErrors] [--gap2seqOpts GAP2SEQ_OPTS] 
       [--randomSeed RANDOM_SEED] 
       [--threads THREADS] 
       [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}] 
       [--version] [--tmp_dir TMP_DIR] 
       [--tmp_dirKeep] 
       in_scaffold in_bam out_scaffold
```

Positional arguments:

- **in_scaffold** FASTA file containing the scaffold. Each FASTA record corresponds to one segment (for multi-segment genomes). Contigs within each segment are separated by Ns.
- **in_bam** Input unaligned reads, BAM format.
- **out_scaffold** Output assembly.

Options:

- **--memLimitGb=4.0** Max memory to use, in gigabytes %default)s
- **--timeSoftLimitMinutes=60.0** Stop trying to close more gaps after this many minutes (default: %default) s; this is a soft/advisory limit
- **--maskErrors=False** In case of any error, just copy in_scaffold to out_scaffold, emulating a successful run that simply could not fill any gaps.
- **--gap2seqOpts=** (advanced) Extra command-line options to pass to Gap2Seq
- **--randomSeed=0** Random seed; 0 means use current time
- **--threads** Number of threads (default: all available cores)
order_and_orient

This step cleans up the de novo assembly with a known reference genome. Uses MUMmer (nucmer or promer) to create a reference-based consensus sequence of aligned contigs (with runs of N’s in between the de novo contigs).

```
usage: assembly.py order_and_orient [-h]
  --outAlternateContigs
  --nGenomeSegments N_GENOME_SEGMENTS
  --outReference OUTREFERENCE
  --outStats OUTSTATS
  --breaklen BREAKLEN
    --maxgap MAXGAP
  --minmatch MINMATCH
  --mincluster MINCLUSTER
  --min_pct_id MIN_PCT_ID
  --min_contig_len MIN_CONTIG_LEN
  --min_pct_contig_aligned MIN_PCT_CONTIG_ALIGNED
  --threads THREADS
  --loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}
  --version
  --tmp_dir TMP_DIR
  --tmp_dirKeep=False

Positional arguments:
inFasta  Input de novo assembly/contigs, FASTA format.
inReference  Reference genome for ordering, orienting, and merging contigs, FASTA format. Multiple filenames may be listed, each containing one reference genome. Alternatively, multiple references may be given by specifying a single filename, and giving the number of reference segments with the nGenomeSegments parameter. If multiple references are given, they must all contain the same number of segments listed in the same order.

outFasta  Output assembly, FASTA format, with the same number of chromosomes as inReference, and in the same order.
```

Options:

--outAlternateContigs Output sequences (FASTA format) from alternative contigs that mapped, but were not chosen for the final output.

--nGenomeSegments=0 Number of genome segments. If 0 (the default), the ‘inReference’ parameter is treated as one genome. If positive, the ‘in-
Reference' parameter is treated as a list of genomes of nGenome-Segments each.

---outReference
Output the reference chosen for scaffolding to this file

---outStats
Output stats used in reference selection

---breaklen, -b
Amount to extend alignment clusters by (if –extend). nucmer default 200, promer default 60.

---maxgap=200, -g=200
Maximum gap between two adjacent matches in a cluster. Our default is %%(default)s. nucmer default 90, promer default 30. Manual suggests going to 1000.

---minmatch=10, -l=10
Minimum length of an maximal exact match. Our default is %%(default)s. nucmer default 20, promer default 6.

---mincluster, -c
Minimum cluster length. nucmer default 65, promer default 20.

---min_pct_id=0.6, -i=0.6
show-tiling: minimum percent identity for contig alignment (0.0 - 1.0, default: %%(default)s)

---min_contig_len=200
show-tiling: reject contigs smaller than this (default: %%(default)s)

---min_pct_contig_aligned=0.3, -v=0.3
show-tiling: minimum percent of contig length in alignment (0.0 - 1.0, default: %%(default)s)

---threads
Number of threads (default: all available cores)

---loglevel=INFO
Verboseness of output. [default: %%(default)s] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

---version, -V
show program’s version number and exit

---tmp_dir=/tmp
Base directory for temp files. [default: %%(default)s]

---tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

impute_from_reference

This takes a de novo assembly, aligns against a reference genome, and imputes all missing positions (plus some of the chromosome ends) with the reference genome. This provides an assembly with the proper structure (but potentially wrong sequences in areas) from which we can perform further read-based refinement. Two steps: filter_short_seqs: We then toss out all assemblies that come out to < 15kb or < 95% unambiguous and fail otherwise. modify_contig: Finally, we trim off anything at the end that exceeds the length of the known reference assembly. We also replace all Ns and everything within 55bp of the chromosome ends with the reference sequence. This is clearly incorrect consensus sequence, but it allows downstream steps to map reads in parts of the genome that would otherwise be Ns, and we will correct all of the inferred positions with two steps of read-based refinement (below), and revert positions back to Ns where read support is lacking. FASTA indexing: output assembly is indexed for Picard, Samtools, Novoalign.

usage: assembly.py impute_from_reference [-h] [--newName NEWNAME] [--minLengthFraction MINLENGTHFRACTION] [--minUnambig MINUNAMBIG] [--replaceLength REPLACELENGTH] [--aligner {muscle,mafft,mummer}] [--index]
Positional arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inFasta</td>
<td>Input assembly/contigs, FASTA format, already ordered, oriented and merged with inReference.</td>
</tr>
<tr>
<td>inReference</td>
<td>Reference genome to impute with, FASTA format.</td>
</tr>
<tr>
<td>outFasta</td>
<td>Output assembly, FASTA format.</td>
</tr>
</tbody>
</table>

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--newName</td>
<td>rename output chromosome (default: do not rename)</td>
</tr>
<tr>
<td>--minLengthFraction=0.5</td>
<td>minimum length for contig, as fraction of reference (default: %%(default)s)</td>
</tr>
<tr>
<td>--minUnambig=0.5</td>
<td>minimum percentage unambiguous bases for contig (default: %%(default)s)</td>
</tr>
<tr>
<td>--replaceLength=0</td>
<td>length of ends to be replaced with reference (default: %%(default)s)</td>
</tr>
<tr>
<td>--aligner=muscle</td>
<td>which method to use to align inFasta to inReference. “muscle” = MUSCLE, “mafft” = MAFFT, “mummer” = nucmer. [default: %%(default)s]</td>
</tr>
<tr>
<td>--index=False</td>
<td>Index outFasta for Picard/GATK, Samtools, and Novoalign.</td>
</tr>
<tr>
<td>--loglevel=INFO</td>
<td>Verboseness of output. [default: %%(default)s]</td>
</tr>
<tr>
<td>--version, -V</td>
<td>show program’s version number and exit</td>
</tr>
<tr>
<td>--tmp_dir=/tmp</td>
<td>Base directory for temp files. [default: %%(default)s]</td>
</tr>
<tr>
<td>--tmp_dirKeep=False</td>
<td>Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.</td>
</tr>
</tbody>
</table>

refine_assembly

This a refinement step where we take a crude assembly, align all reads back to it, and modify the assembly to the majority allele at each position based on read pileups. This step considers both SNPs as well as indels called by GATK and will correct the consensus based on GATK calls. Reads are aligned with Novoalign, then PCR duplicates are removed with Picard (in order to debias the allele counts in the pileups), and realigned with GATK’s IndelRealigner (in order to call indels). Output FASTA file is indexed for Picard, Samtools, and Novoalign.

Positional arguments:

- **inFasta**
 Input assembly, FASTA format, pre-indexed for Picard, Samtools, and Novoalign.

- **inBam**
 Input reads, unaligned BAM format.

- **outFasta**
 Output refined assembly, FASTA format, indexed for Picard, Samtools, and Novoalign.

Options:

- **--already_realigned_bam**
 BAM with reads that are already aligned to inFasta. This bypasses the alignment process by novoalign and instead uses the given BAM to make an assembly. When set, outBam is ignored.

- **--outBam**
 Reads aligned to inFasta. Unaligned and duplicate reads have been removed. GATK indel realigned.

- **--outVcf**
 GATK genotype calls for genome in inFasta coordinate space.

- **--min_coverage=3**
 Minimum read coverage required to call a position unambiguous.

- **--major_cutoff=0.5**
 If the major allele is present at a frequency higher than this cutoff, we will call an unambiguous base at that position. If it is equal to or below this cutoff, we will call an ambiguous base representing all possible alleles at that position. [default: %default]

- **--novo_params=-r Random -l 40 -g 40 -x 20 -t 100**
 Alignment parameters for Novoalign.

- **--chr_names=[]**
 Rename all output chromosomes (default: retain original chromosome names)

- **--keep_all_reads=False**
 Retain all reads in BAM file? Default is to remove unaligned and duplicate reads.

- **--JVMmemory=2g**
 JVM virtual memory size (default: %default)

- **--GATK_PATH**
 A path containing the GATK jar file. This overrides the GATK_ENV environment variable or the GATK conda package. (default: %default)

- **--NOVOALIGN_LICENSE_PATH**
 A path to the novoalign.lic file. This overrides the NOVOALIGN_LICENSE_PATH environment variable. (default: %default)
--threads
Number of threads (default: all available cores)

--loglevel=INFO
Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program's version number and exit

--tmp_dir=/tmp
Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

filter_short_seqs
Check sequences in inFile, retaining only those that are at least minLength

```
usage: assembly.py filter_short_seqs [-h] [-f FORMAT] [-of OUTPUT_FORMAT] 
                   |--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}
                   |--version
                   inFile minLength minUnambig outFile
```

Positional arguments:

- inFile
 input sequence file
- minLength
 minimum length for contig
- minUnambig
 minimum percentage unambiguous bases for contig

Options:

- -f=fasta, --format=fasta Format for input sequence (default: %(default)s)
- -of=fasta, --output-format=fasta Format for output sequence (default: %(default)s)
- -loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program's version number and exit

modify_contig
Modifies an input contig. Depending on the options selected, can replace N calls with reference calls, replace ambiguous calls with reference calls, trim to the length of the reference, replace contig ends with reference calls, and trim leading and trailing Ns. Author: rsealfon.

```
                   [-l REPLACE_LENGTH] [-f FORMAT] [-r] [-rn] 
                   [-ca] [--tmp_dir TMP_DIR] [--tmp_dirKeep] 
                   |--loglevel 
                   (--DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION)
                   |--version
                   input output ref
```

Positional arguments:

- input
 input alignment of reference and contig (should contain exactly 2 sequences)
output Destination file for modified contigs
ref reference sequence name (exact match required)

Options:
-n, --name fasta header output name (default: existing header)
-cn=False, --call-reference-ns=False should the reference sequence be called if there is an N in the contig and a more specific base in the reference (default: %(default)s)
-t=False, --trim-ends=False should ends of contig.fasta be trimmed to length of reference (default: %(default)s)
-r5=False, --replace-5ends=False should the 5'-end of contig.fasta be replaced by reference (default: %(default)s)
-r3=False, --replace-3ends=False should the 3'-end of contig.fasta be replaced by reference (default: %(default)s)
-l=10, --replace-length=10 length of ends to be replaced (if replace-ends is yes) (default: %(default)s)
-f=fasta, --format=fasta Format for input alignment (default: %(default)s)
-r=False, --replace-end-gaps=False Replace gaps at the beginning and end of the sequence with reference sequence (default: %(default)s)
-rn=False, --remove-end-ns=False Remove leading and trailing N’s in the contig (default: %(default)s)
-ca=False, --call-reference-ambiguous=False should the reference sequence be called if the contig seq is ambiguous and the reference sequence is more informative & consistant with the ambiguous base (ie Y>C) (default: %(default)s)
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit

cf_to_fasta

Take input genotypes (VCF) and construct a consensus sequence (fasta) by using majority-read-count alleles in the VCF. Genotypes in the VCF will be ignored—we will use the allele with majority read support (or an ambiguity base if there is no clear majority). Uncalled positions will be emitted as N’s. Author: dpark.

Positional arguments:

`inVcf` Input VCF file

`outFasta` Output FASTA file

Options:

`--trim_ends=False` If specified, we will strip off continuous runs of N’s from the beginning and end of the sequences before writing to output. Interior N’s will not be changed.

`--min_coverage=3` Specify minimum read coverage (with full agreement) to make a call. [default: %(default)s]

`--major_cutoff=0.5` If the major allele is present at a frequency higher than this cutoff, we will call an unambiguous base at that position. If it is equal to or below this cutoff, we will call an ambiguous base representing all possible alleles at that position. [default: %(default)s]

`--min_dp_ratio=0.0` The input VCF file often reports two read depth values (DP)–one for the position as a whole, and one for the sample in question. We can optionally reject calls in which the sample read count is below a specified fraction of the total read count. This filter will not apply to any sites unless both DP values are reported. [default: %(default)s]

`--name=[]` output sequence names (default: reference names in VCF file)

`--loglevel=INFO` Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

`--version, -V` show program’s version number and exit

trim_fasta

Take input sequences (fasta) and trim any continuous sections of N’s from the ends of them. Write trimmed sequences to an output fasta file.

```bash
usage: assembly.py trim_fasta [-h]
       [---loglevel
        [---loglevel
        [---version]
        inFasta outFasta]
```

Positional arguments:

`inFasta` Input fasta file

`outFasta` Output (trimmed) fasta file

Options:

`--loglevel=INFO` Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

`--version, -V` show program’s version number and exit
deambig fasta

Take input sequences (fasta) and replace any ambiguity bases with a random unambiguous base from among the possibilities described by the ambiguity code. Write output to fasta file.

```
usage: assembly.py deambig_fasta [-h]
       [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
       [--version]
inFasta outFasta
```

Positional arguments:

- `inFasta` Input fasta file
- `outFasta` Output fasta file

Options:

- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit

1.3.4 interhost.py - species and population-level genetic variation

This script contains a number of utilities for SNP calling, multi-alignment, phylogenetics, etc.

```
usage: interhost.py subcommand
```

Sub-commands:

- **snpEff**
 Annotate variants in VCF file with translation consequences using snpEff.

```
       [--version]
inVcf genomes [genomes ...] outVcf
```

Positional arguments:

- `inVcf` Input VCF file
- `genomes` genome name (snpEff db name, or NCBI accessions)
- `outVcf` Output VCF file

Options:

- `--emailAddress` Your email address. To access the Genbank CoreNucleotide database, NCBI requires you to specify your email address with each request. In case of excessive usage of the E-utils, NCBI will attempt to contact a user at the email address provided before blocking access.
- `--tmp_dir=/tmp` Base directory for temp files. [default: %(default)s]
- `--tmp_dirKeep=False`: Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.
- `--loglevel=INFO`: Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V`: show program’s version number and exit

align_mafft

Run the mafft alignment on the input FASTA file.

```plaintext
usage: interhost.py align_mafft [-h] [--localpair | --globalpair]
          [--preservecase] [--reorder]
          [--gapOpeningPenalty GAPOPENINGPENALTY]
          [--ep EP] [--verbose] [--outputAsClustal]
          [--maxiters MAXITERS] [--threads THREADS]
          [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
          [--version] [--tmp_dir TMP_DIR]
          [--tmp_dirKeep] inFastas [inFastas ...] outFile
```

Positional arguments:
- `inFastas`: Input FASTA files.
- `outFile`: Output file containing alignment result (default format: FASTA)

Options:
- `--localpair`: All pairwise alignments are computed with the Smith-Waterman algorithm.
- `--globalpair`: All pairwise alignments are computed with the Needleman-Wunsch algorithm.
- `--preservecase`: Preserve base or aa case, as well as symbols.
- `--reorder`: Output is ordered aligned rather than in the order of the input (default: %(default)s).
- `--gapOpeningPenalty=1.53`: Gap opening penalty (default: %(default)s).
- `--ep`: Offset (works like gap extension penalty).
- `--verbose=False`: Full output (default: %(default)s).
- `--outputAsClustal`: Write output file in Clustal format rather than FASTA
- `--maxiters=0`: Maximum number of refinement iterations (default: %(default)s). Note: if “--localpair” or “--globalpair” is specified this defaults to 1000.
- `--threads`: Number of threads (default: all available cores)
- `--loglevel=INFO`: Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V`: show program’s version number and exit
- `--tmp_dir=/tmp`: Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

```
multichr_mafft
```

Run the mafft alignment on a series of chromosomes provided in sample-partitioned FASTA files. Output as FASTA. (i.e. file1.fasta would contain chr1, chr2, chr3; file2.fasta would also contain chr1, chr2, chr3)

```
```

Positional arguments:

- **inFastas**: Input FASTA files.
- **outDirectory**: Location for the output files (default is cwd: %%(default)s)

Options:

- **--localpair**: All pairwise alignments are computed with the Smith-Waterman algorithm.
- **--globalpair**: All pairwise alignments are computed with the Needleman-Wunsch algorithm.
- **--preservecase**: Preserve base or aa case, as well as symbols.
- **--reorder**: Output is ordered aligned rather than in the order of the input (default: %%(default)s).
- **--gapOpeningPenalty=1.53**: Gap opening penalty (default: %%(default)s).
- **--ep**: Offset (works like gap extension penalty).
- **--verbose=False**: Full output (default: %%(default)s).
- **--outputAsClustal**: Write output file in Clustal format rather than FASTA
- **--maxiters=0**: Maximum number of refinement iterations (default: %%(default)s). Note: if “--localpair” or “--globalpair” is specified this defaults to 1000.
- **--outFilePrefix=aligned**: Prefix for the output file name (default: %%(default)s)
- **--sampleRelationFile**: If the parameter sampleRelationFile is specified (as a file path), a JSON file will be written mapping sample name to sequence position in the output.
- **--sampleNameListFile**: If the parameter sampleNameListFile is specified (as a file path), a file will be written mapping sample names in the order of their sequence positions in the output.
1.3.5 intrahost.py - within-host genetic variation (iSNVs)

This script contains a number of utilities for intrahost variant calling and annotation for viral genomes.

usage: intrahost.py subcommand

Sub-commands:

vphaser_one_sample

Input: a single BAM file, representing reads from one sample, mapped to its own consensus assembly. It may contain multiple read groups and libraries. Output: a tab-separated file with no header containing filtered V Phaser-2 output variants with additional column for sequence/chrom name, and library counts and p-values appended to the counts for each allele.

```
usage: intrahost.py vphaser_one_sample [-h]
       [--vphaserNumThreads VPHASERNUMTHREADS]
       [--minReadsEach MINREADSEACH]
       [--maxBias MAXBIAS]
       [--removeDoublyMappedReads]
       [--logfile
       →{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
       [--version]
       inBam inConsFasta outTab
```

Positional arguments:

- `inBam`: Input BAM file.
- `inConsFasta`: Consensus assembly fasta.
- `outTab`: Tab-separated headerless output file.

Options:

- `--vphaserNumThreads` Number of threads in call to V-Phaser 2.
- `--minReadsEach=5` Minimum number of reads on each strand (default: %(default)s).
- `--maxBias=10` Maximum allowable ratio of number of reads on the two strands (default: %(default)s). Ignored if `minReadsEach = 0`.
- `--removeDoublyMappedReads=False` When calling V-Phaser, remove reads mapping to more than one contig. Default is to keep the reads.
- `--logfile` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
vphaser

Run V-Phaser 2 on the input file without any additional filtering. Combine the non-header lines of the CHROM.var.raw.txt files it produces, adding CHROM as the first field on each line.

```
usage: intrahost.py vphaser [-h] [--numThreads NUMTHREADS]
      [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
      [--version]
      inBam outTab
```

Positional arguments:
- `inBam` Input Bam file.
- `outTab` Tab-separated headerless output file.

Options:
- `--numThreads` Number of threads in call to V-Phaser 2.
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit

tabfile_rename

Take input tab file and copy to an output file while changing the values in a specific column based on a mapping file. The first line will pass through untouched (it is assumed to be a header).

```
usage: intrahost.py tabfile_rename [-h] [--col_idx COL]
      [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
      [--version]
      inFile mapFile outFile
```

Positional arguments:
- `inFile` Input flat file
- `mapFile` Map file. Two-column headerless file that maps input values to output values. This script will error if there are values in inFile that do not exist in mapFile.
- `outFile` Output flat file

Options:
- `--col_idx=0` Which column number to replace (0-based index). [default: %(default)s]
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit
merge_to_vcf

Combine and convert vPhaser2 parsed filtered output text files into VCF format. Assumption: consensus assemblies used in creating alignments do not extend beyond ends of reference. The number of alignment files equals the number of chromosomes / segments.

```
usage: intrahost.py merge_to_vcf [-h] [--samples [SAMPLES [SAMPLES ...]]]
                          --isnvs ISNVS [ISNVS ...] --alignments
                          ALIGNMENTS [ALIGNMENTS ...]
                          [--strip_chr_version] [--naive_filter]
                          [--parse_accession]
                          [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
                          [--version]
                          refFasta outVcf
```

Positional arguments:

- **refFasta**: The target reference genome. outVcf will use these chromosome names, coordinate spaces, and reference alleles.

- **outVcf**: Output VCF file containing all variants.

Options:

- **--samples**: A list of sample names.

- **--isnvs**: A list of file names from the output of vphaser_one_sample. These must be in the SAME ORDER as samples.

- **--alignments**: A list of fasta files containing multialignment of input assemblies, with one file per chromosome/segment. Each alignment file will contain a line for each sample, as well as the reference genome to which they were aligned.

- **--strip_chr_version=False**: If set, strip any trailing version numbers from the chromosome names. If the chromosome name ends with a period followed by integers, this is interpreted as a version number to be removed. This is because Genbank accession numbers are often used by SnpEff databases downstream, but without the corresponding version number. Default is false (leave chromosome names untouched).

- **--naive_filter=False**: If set, keep only the alleles that have at least two independent libraries of support and allele freq > 0.005. Default is false (do not filter at this stage).

- **--parse_accession=False**: If set, parse only the accession for the chromosome name. Helpful if snpEff has to create its own database.

- **--loglevel=INFO**: Verboseness of output. [default: %(default)s] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

- **--version, -V**: show program’s version number and exit

Fws

Compute the Fws statistic on iSNV data. See Manske, 2012 (Nature)
usage: intrahost.py Fws [-h]
 [--loglevel
 →{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version]
 inVcf outVcf

Positional arguments:

 inVcf Input VCF file
 outVcf Output VCF file

Options:

 --loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
 --version, -V show program’s version number and exit

iSNV_table

Convert VCF iSNV data to tabular text

usage: intrahost.py iSNV_table [-h]
 [--loglevel
 →{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version]
 inVcf outFile

Positional arguments:

 inVcf Input VCF file
 outFile Output text file

Options:

 --loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
 --version, -V show program’s version number and exit

iSNP_per_patient

Aggregate tabular iSNP data per patient x position (all time points averaged)

usage: intrahost.py iSNP_per_patient [-h]
 [--loglevel
 →{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version]
 inFile outFile

Positional arguments:

 inFile Input text file
 outFile Output text file

Options:
1.3.6 read_utils.py - utilities that manipulate bam and fastq files

Utilities for working with sequence reads, such as converting formats and fixing mate pairs.

```
usage: read_utils.py subcommand
```

Sub-commands:

purge_unmated

Use `mergeShuffledFastqSeqs` to purge unmated reads, and put corresponding reads in the same order. Corresponding sequences must have sequence identifiers of the form SEQID/1 and SEQID/2.

```
```

Positional arguments:

- `inFastq1`: Input fastq file; 1st end of paired-end reads.
- `inFastq2`: Input fastq file; 2nd end of paired-end reads.
- `outFastq1`: Output fastq file; 1st end of paired-end reads.
- `outFastq2`: Output fastq file; 2nd end of paired-end reads.

Options:

- `--regex=^@([S]+)[12]$` Perl regular expression to parse paired read IDs (default: `%%(default)s`)
- `--loglevel=INFO` Verboseness of output. [default: `%%(default)s`]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit
- `--tmp_dir=/tmp` Base directory for temp files. [default: `%%(default)s`]
- `--tmp_dirKeep=False` Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

index_fasta_samtools

Index a reference genome for Samtools.

```
usage: read_utils.py index_fasta_samtools [-h]

```

1.3. Command line tools
Positional arguments:

inFasta	Reference genome, FASTA format.

Options:

--loglevel=INFO	Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V	show program’s version number and exit

index_fasta_picard

Create an index file for a reference genome suitable for Picard/GATK.

```
usage: read_utils.py index_fasta_picard [-h] [--JVMmemory JVMMEMORY]
        [--picardOptions [PICARDOPTIONS]]
        [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
        [--version] [--tmp_dir TMP_DIR]
        [--tmp_dirKeep]
inFasta
```

Positional arguments:

inFasta	Input reference genome, FASTA format.

Options:

--JVMmemory=512m	JVM virtual memory size (default: %(default)s)

--picardOptions=[]	Optional arguments to Picard’s CreateSequenceDictionary, OPTIONNAME=value ...

--loglevel=INFO	Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V	show program’s version number and exit

--tmp_dir=/tmp	Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False	Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

mkdup_picard

Mark or remove duplicate reads from BAM file.

```
usage: read_utils.py mkdup_picard [-h] [--outMetrics OUTMETRICS] [--remove]
        [--JVMmemory JVMMEMORY]
        [--picardOptions [PICARDOPTIONS]]
        [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
        [--version] [--tmp_dir TMP_DIR]
        [--tmp_dirKeep]
inBams [inBams ...] outBam
```

Positional arguments:
viral-ngs Documentation, Release v1.25.0-8-ge144969e

inBams
Input reads, BAM format.

outBam
Output reads, BAM format.

Options:

- **--outMetrics**
Output metrics file. Default is to dump to a temp file.
- **--remove=False**
Instead of marking duplicates, remove them entirely (default: %(default)s)
- **--JVMmemory=2g**
JVM virtual memory size (default: %(default)s)
- **--picardOptions=[]**
Optional arguments to Picard’s MarkDuplicates, OPTION-NAME=value ...
- **--loglevel=INFO**
Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V**
show program’s version number and exit
- **--tmp_dir=/tmp**
Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False**
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

revert_bam_picard

Revert BAM to raw reads

```plaintext
usage: read_utils.py revert_bam_picard [-h] [--JVMmemory JVMMEMORY]  
                    [--picardOptions [PICARDOPTIONS ...]]  
                    [--clearTags]  
                    [--tagsToClear TAGS_TO_CLEAR [TAGS_TO_  
                                   CLEAR ...]]  
                    [--doNotSanitize]  
                    [--loglevel  
                                   {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
                    [--version]  
                    [--tmp_dir TMP_DIR]  
                    [--tmp_dirKeep]  
                    inBam outBam
```

Positional arguments:

- **inBam**
Input reads, BAM format.

- **outBam**
Output reads, BAM format.

Options:

- **--JVMmemory=2g**
JVM virtual memory size (default: %(default)s)
- **--picardOptions=[]**
Optional arguments to Picard’s RevertSam, OPTION-NAME=value ...
- **--clearTags=False**
When supplying an aligned input file, clear the per-read attribute tags
- **--tagsToClear=['XT', 'X0', 'X1', 'XA', 'AM', 'SM', 'BQ', 'CT', 'XN', 'OC', 'OP']**
A space-separated list of tags to remove from all reads in the input bam file (default: %(default)s)
When being reverted, picard’s SANITIZE=true is set unless --doNotSanitize is given. Sanitization is a destructive operation that removes reads so the bam file is consistent. From the picard documentation: ‘Reads discarded include (but are not limited to) paired reads with missing mates, duplicated records, records with mismatches in length of bases and qualities.’ For more information see: https://broadinstitute.github.io/picard/command-line-overview.html#RevertSam

Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

show program’s version number and exit

Base directory for temp files. [default: %(default)s]

Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

Generic Picard runner.

```
usage: read_utils.py picard [-h] [--JVMmemory JVMMEMORY]
                                    [--picardOptions [PICARDOPTIONS [PICARDOPTIONS ...]
                                    ]]
                                    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
                                    [--version] [--tmp_dir TMP_DIR] [--tmp_dirKeep]
command

Positional arguments:
  command                  picard command

Options:
  --JVMmemory=2g           JVM virtual memory size (default: %(default)s)
  --picardOptions=[]       Optional arguments to Picard, OPTIONNAME=value ...
  --loglevel=INFO          Verboseness of output. [default: %(default)s]
                            Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
  --version, -V            show program’s version number and exit
  --tmp_dir=/tmp           Base directory for temp files. [default: %(default)s]
  --tmp_dirKeep=False      Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

Sort BAM file

```

```
usage: read_utils.py sort_bam [-h] [--index] [--md5] [--JVMmemory JVMMEMORY]
                                    [--picardOptions [PICARDOPTIONS [PICARDOPTIONS ...
                                    ]]
                                    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
```
Positional arguments:

- `inBam` Input bam file.
- `outBam` Output bam file, sorted.
- `sortOrder` How to sort the reads. [default: %(default)s]
 Possible choices: unsorted, queryname, coordinate

Options:

- `--index=False` Index outBam (default: %(default)s)
- `--md5=False` MD5 checksum outBam (default: %(default)s)
- `--JVMmemory=2g` JVM virtual memory size (default: %(default)s)
- `--picardOptions=[]` Optional arguments to Picard’s SortSam, OPTIONNAME=value ...
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit
- `--tmp_dir=/tmp` Base directory for temp files. [default: %(default)s]
- `--tmp_dirKeep=False` Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

downsample_bams

Downsample multiple bam files to the smallest read count in common, or to the specified count.

Positional arguments:

- `in_bams` Input bam files.

Options:

- `--outPath` Output path. If not provided, downsampled bam files will be written to the same paths as each source bam file
- `--readCount` The number of reads to downsample to.
--deduplicateBefore=False de-duplicate reads before downsampling.
--deduplicateAfter=False de-duplicate reads after downsampling.
--JVMmemory=4g JVM virtual memory size (default: %%(default)s)
--picardOptions=[] Optional arguments to Picard’s DownsampleSam, OPTION-NAME=value ...
--threads Number of threads (default: all available cores)
--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. De-
fault is to delete all temp files at the end, even if there’s a failure.

merge_bams

Merge multiple BAMs into one

```
usage: read_utils.py merge_bams [-h] [--JVMmemory JVMMEMORY] 
    --picardOptions [PICARDOPTIONS ...]]
    --loglevel
    --version] [--tmp_dir TMP_DIR]
    inBams [inBams ...] outBam
```

Positional arguments:
- **inBams**: Input bam files.
- **outBam**: Output bam file.

Options:
- **--JVMmemory=2g**: JVM virtual memory size (default: %%(default)s)
- **--picardOptions=[]**: Optional arguments to Picard’s MergeSamFiles, OPTION-NAME=value ...
- **--loglevel=INFO**: Verboseness of output. [default: %%(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V**: show program’s version number and exit
- **--tmp_dir=/tmp**: Base directory for temp files. [default: %%(default)s]
- **--tmp_dirKeep=False**: Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.

filter_bam

Filter BAM file by read name

Positional arguments:
inBam Input bam file.
readList Input file of read IDs.
outBam Output bam file.

Options:
--exclude=False If specified, readList is a list of reads to remove from input. Default behavior is to treat readList as an inclusion list (all unnamed reads are removed).
--JVMmemory=4g JVM virtual memory size (default: %(default)s)
--picardOptions=[] Optional arguments to Picard’s FilterSamReads, OPTION-NAME=value ...
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

fastq_to_bam
Convert a pair of fastq paired-end read files and optional text header to a single bam file.

Positional arguments:
inFastq1 Input fastq file; 1st end of paired-end reads.
inFastq2 Input fastq file; 2nd end of paired-end reads.
outBam Output bam file.

Options:
--sampleName Sample name to insert into the read group header.
--header Optional text file containing header.
--JVMmemory=2g JVM virtual memory size (default: %(default)s)
--picardOptions=[] Optional arguments to Picard’s FastqToSam, OPTION-NAME=value ... Note that header-related options will be overwritten by HEADER if present.
--loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

join_paired_fastq
Join paired fastq reads into single reads with Ns

usage: read_utils.py join_paired_fastq [-h] [--outFormat OUTFORMAT]
 [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep]
 output inFastqs [inFastqs ...]

Positional arguments:

output Output file.
inFastqs Input fastq file (2 if paired, 1 if interleaved)

Options:

--outFormat=fastq Output file format.
--loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

split_bam
Split BAM file equally into several output BAM files.

usage: read_utils.py split_bam [-h]
 [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep]
 inBam outBams [outBams ...]

Positional arguments:
inBam Input BAM file.
outBams Output BAM files

Options:
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

reheader_bam
Copy a BAM file (inBam to outBam) while renaming elements of the BAM header. The mapping file specifies which (key, old value, new value) mappings. For example: LB lib1 lib_one SM sample1 Sample_1 SM sample2 Sample_2 SM sample3 Sample_3 CN broad BI

usage: read_utils.py reheader_bam [-h]
[--loglevel
--+{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
[--version] [--tmp_dir TMP_DIR]
[--tmp_dirKeep]
inBam rgMap outBam

Positional arguments:
inBam Input reads, BAM format.
rgMap Tabular file containing three columns: field, old, new.
outBam Output reads, BAM format.

Options:
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

reheader_bams
Copy BAM files while renaming elements of the BAM header. The mapping file specifies which (key, old value, new value) mappings. For example: LB lib1 lib_one SM sample1 Sample_1 SM sample2 Sample_2 SM sample3 Sample_3 CN broad BI FN in1.bam out1.bam FN in2.bam out2.bam

usage: read_utils.py reheader_bams [-h]
[--loglevel
--+{DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
[--version] [--tmp_dir TMP_DIR]
[--tmp_dirKeep]
rgMap

1.3. Command line tools
Positional arguments:

- `rgMap` Tabular file containing three columns: field, old, new.

Options:

- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit
- `--tmp_dir=/<tmp>` Base directory for temp files. [default: %(default)s]
- `--tmp_dirKeep=False` Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

rmdup_cdhit_bam

Remove duplicate reads from BAM file using cd-hit-dup.

```
```

Positional arguments:

- `inBam` Input reads, BAM format.
- `outBam` Output reads, BAM format.

Options:

- `--JVMmemory=4g` JVM virtual memory size (default: %(default)s)
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit
- `--tmp_dir=/<tmp>` Base directory for temp files. [default: %(default)s]
- `--tmp_dirKeep=False` Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

rmdup_mvicuna_bam

Remove duplicate reads from BAM file using M-Vicuna. The primary advantage to this approach over Picard’s MarkDuplicates tool is that Picard requires that input reads are aligned to a reference, and M-Vicuna can operate on unaligned reads.

```
```

Positional arguments:
viral-ngs Documentation, Release v1.25.0-8-ge144969e

inBam Input reads, BAM format.
outBam Output reads, BAM format.

Options:

--JVMmemory=4g JVM virtual memory size (default: %(default)s)
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

rmdup_prinseq_fastq

Run prinseq-lite’s duplicate removal operation on paired-end reads. Also removes reads with more than one N.

```
usage: read_utils.py rmdup_prinseq_fastq [-h] [--includeUnmated]  
       [-unpairedOutFastq1 INPUTFASTQ1] [-unpairedOutFastq2 INPUTFASTQ2] 
       [-loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}] 
       [--version] [--tmp_dir TMP_DIR] 
       inFastq1 inFastq2 outFastq1 outFastq2
```

Positional arguments:

inFastq1 Input fastq file; 1st end of paired-end reads.
inFastq2 Input fastq file; 2nd end of paired-end reads.
outFastq1 Output fastq file; 1st end of paired-end reads.
outFastq2 Output fastq file; 2nd end of paired-end reads.

Options:

--includeUnmated=False Include unmated reads in the main output fastq files (default: %(default)s)
--unpairedOutFastq1 File name of output unpaired reads from 1st end of paired-end reads (independent of --includeUnmated)
--unpairedOutFastq2 File name of output unpaired reads from 2nd end of paired-end reads (independent of --includeUnmated)
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

filter_bam_mapped_only

Samtools to reduce a BAM file to only reads that are aligned (-F 4) with a non-zero mapping quality (-q 1) and are not marked as a PCR/optical duplicate (-F 1024).

```
usage: read_utils.py filter_bam_mapped_only [-h]
       [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
       [--version] [--tmp_dir TMP_DIR]
       [--tmp_dirKeep] inBam outBam
```

Positional arguments:

- **inBam**: Input aligned reads, BAM format.
- **outBam**: Output sorted indexed reads, filtered to aligned-only, BAM format.

Options:

- **--loglevel=INFO**: Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V**: show program’s version number and exit
- **--tmp_dir=/tmp**: Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False**: Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

novoalign

Align reads with Novoalign. Sort and index BAM output.

```
usage: read_utils.py novoalign [-h] [--options OPTIONS] [--min_qual MIN_QUAL]
       [--JVMmemory JVMMEMORY] [--NOVOALIGN_LICENSE_PATH NOVOALIGN_LICENSE_PATH]
       [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
       [--version] [--tmp_dir TMP_DIR] [--tmp_dirKeep] inBam refFasta outBam
```

Positional arguments:

- **inBam**: Input reads, BAM format.
- **refFasta**: Reference genome, FASTA format, pre-indexed by Novoindex.
- **outBam**: Output reads, BAM format (aligned).

Options:

- **--options=-r Random**: Novoalign options (default: %(default)s)
- **--min_qual=0**: Filter outBam to minimum mapping quality (default: %(default)s)
- **--JVMmemory=2g**: JVM virtual memory size (default: %(default)s)
viral-ngs Documentation, Release v1.25.0-8-ge144969e

--NOVOALIGN_LICENSE_PATH A path to the novoalign.lic file. This overrides the NOVOALIGN_LICENSE_PATH environment variable. (default: %%(default)s)

--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

novoindex

```bash
usage: read_utils.py novoindex [-h]
    [--NOVOALIGN_LICENSE_PATH NOVOALIGN_LICENSE_PATH]
    [--loglevel=INFO {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
    [--version]
    refFasta
```

Positional arguments:

- **refFasta** Reference genome, FASTA format.

Options:

- **--NOVOALIGN_LICENSE_PATH** A path to the novoalign.lic file. This overrides the NOVOALIGN_LICENSE_PATH environment variable. (default: %%(default)s)

- **--loglevel=INFO** Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

- **--version, -V** show program’s version number and exit

gatk Ug

Call genotypes using the GATK UnifiedGenotyper.

```bash
usage: read_utils.py gatk Ug [-h] [--options OPTIONS] [--JVMmemory JVMMEMORY] [--GATK_PATH GATK_PATH]
    [--loglevel]
    [DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION]]
    [--version] [--tmp_dir TMP_DIR] [--tmp_dirKeep]
    inBam refFasta outVcf
```

Positional arguments:

- **inBam** Input reads, BAM format.

- **refFasta** Reference genome, FASTA format, pre-indexed by Picard.

- **outVcf** Output calls in VCF format. If this filename ends with .gz, GATK will BGZIP compress the output and produce a Tabix index file as well.

1.3. Command line tools 53
Options:

--options=--min_base_quality_score 15 -ploidy 4 UnifiedGenotyper options (default: %%(default)s)
--JVMmemory=2g JVM virtual memory size (default: %%(default)s)
--GATK_PATH A path containing the GATK jar file. This overrides the GATK_ENV environment variable or the GATK conda package. (default: %%(default)s)
--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program's version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

gatk_realign

Local realignment of BAM files with GATK IndelRealigner.

Positional arguments:
inBam Input reads, BAM format, aligned to refFasta.
refFasta Reference genome, FASTA format, pre-indexed by Picard.
outBam Realigned reads.

Options:

--JVMmemory=2g JVM virtual memory size (default: %%(default)s)
--GATK_PATH A path containing the GATK jar file. This overrides the GATK_ENV environment variable or the GATK conda package. (default: %%(default)s)
--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program's version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.
--threads Number of threads (default: all available cores)
align_and_fix

Take reads, align to reference with Novoalign, optionally mark duplicates with Picard, realign indels with GATK, and optionally filters final file to mapped/non-dupe reads.

```
usage: read_utils.py align_and_fix [-h] [--outBamAll OUTBAMALL]
                                           [--outBamFiltered OUTBAMFILTERED]
                                           [--aligner_options ALIGNER_OPTIONS]
                                           [--aligner {novoalign,bwa}]
                                           [--JVMmemory JVMMEMORY] [--threads THREADS]
                                           [--skipMarkDupes] [--GATK_PATH GATK_PATH]
                                           [--NOVOALIGN_LICENSE_PATH NOVOALIGN_LICENSE_PATH] [--version]
                                           [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
                                           [--tmp_dir TMP_DIR] [--tmp_dirKeep] inBam refFasta
```

Positional arguments:

- **inBam**: Input unaligned reads, BAM format.
- **refFasta**: Reference genome, FASTA format; will be indexed by Picard and Novoalign.

Options:

- **--outBamAll**: Aligned, sorted, and indexed reads. Unmapped and duplicate reads are retained. By default, duplicate reads are marked. If “--skipMarkDupes” is specified duplicate reads are included in output without being marked.
- **--outBamFiltered**: Aligned, sorted, and indexed reads. Unmapped reads are removed from this file, as well as any marked duplicate reads. Note that if “--skipMarkDupes” is provided, duplicates will be not be marked and will be included in the output.
- **--aligner_options**: aligner options (default for novoalign: “-r Random”, bwa: “-T 30”)
- **--aligner=novoalign**: aligner (default: %(default)s) Possible choices: novoalign, bwa
- **--JVMmemory=4g**: JVM virtual memory size (default: %(default)s)
- **--threads**: Number of threads (default: all available cores)
- **--skipMarkDupes=False**: If specified, duplicate reads will not be marked in the resulting output file.
- **--GATK_PATH**: A path containing the GATK jar file. This overrides the GATK_ENV environment variable or the GATK conda package. (default: %(default)s)
- **--NOVOALIGN_LICENSE_PATH**: A path to the novoalign.lic file. This overrides the NOVOALIGN_LICENSE_PATH environment variable. (default: %(default)s)
- **--loglevel=INFO**: Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

bwamem_idxstats

Take reads, align to reference with BWA-MEM and perform samtools idxstats.

```
usage: read_utils.py bwamem_idxstats [-h] [--outBam OUTBAM]  
[--outStats OUTSTATS]  
[--minScoreToFilter MIN_SCORE_TO_FILTER]  
[--alignerOptions ALIGNER_OPTIONS]  
[--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]  
[--version] [--tmp_dir TMP_DIR]  
[--tmp_dirKeep]
inBam refFasta
```

Positional arguments:

- **inBam** Input unaligned reads, BAM format.
- **refFasta** Reference genome, FASTA format, pre-indexed by Picard and Novoalign.

Options:

- **--outBam** Output aligned, indexed BAM file
- **--outStats** Output idxstats file
- **--minScoreToFilter** Filter bwa alignments using this value as the minimum allowed alignment score. Specifically, sum the alignment scores across all alignments for each query (including reads in a pair, supplementary and secondary alignments) and then only include, in the output, queries whose summed alignment score is at least this value. This is only applied when the aligner is ‘bwa’. The filtering on a summed alignment score is sensible for reads in a pair and supplementary alignments, but may not be reasonable if bwa outputs secondary alignments (i.e., if ‘-a’ is in the aligner options). (default: not set - i.e., do not filter bwa’s output)
- **--alignerOptions** bwa options (default: bwa defaults)
- **--loglevel=INFO** Verboseness of output. [default: %%(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V** show program’s version number and exit
- **--tmp_dir=/tmp** Base directory for temp files. [default: %%(default)s]
- **--tmp_dirKeep=False** Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

extract_tarball
Extract an input .tar, .tgz, .tar.gz, .tar.bz2, .tar.lz4, or .zip file to a given directory (or we will choose one on our own). Emit the resulting directory path to stdout.

usage: read_utils.py extract_tarball [-h]
 [-c-compression {gz,bz2,lz4,zip,none,auto}]
 [-pipe_hint PIPE_HINT]
 [-threads THREADS]
 [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep] tarfile out_dir

Positional arguments:
 tarfile Input tar file. May be “-” for stdin.
 out_dir Output directory

Options:
 --compression=auto Compression type (default: %(default)s). Auto-detect is incompatible with stdin input unless pipe_hint is specified.
 Possible choices: gz, bz2, lz4, zip, none, auto
 --pipe_hint If tarfile is stdin, you can provide a file-like URI string for pipe_hint which ends with a common compression file extension if you want to use compression=auto.
 --threads Number of threads (default: all available cores)
 --loglevel=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
 --version, -V show program’s version number and exit
 --tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
 --tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

read_names

Extract read names from a sequence file

usage: read_utils.py read_names [-h] [--threads THREADS]
 [-c-loglevel]
 [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep] in_reads out_read_names

Positional arguments:
 in_reads the input reads ([compressed] fasta or bam)
 out_read_names the read names

Options:
 --threads Number of threads (default: all available cores)
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

1.3.7 kmer_utils.py - utilities that manipulate kmer sets and use them to filter reads or reference sequences

Commands for working with sets of kmers

usage: kmer_utils.py subcommand

Sub-commands:

build_kmer_db

Build a database of kmers occurring in given sequences.

Positional arguments:

seq_files Files from which to extract kmers (fasta/fastq/bam, fasta/fastq may be .gz or .bz2)
kmer_db kmer database (with or without .kmc_pre/.kmc_suf suffix)

Options:

--kmerSize=25, -k=25 kmer size
--minOccs=1, -ci=1 drop kmers with fewer than this many occurrences
--maxOccs=2147483647, -cx=2147483647 drop kmers with more than this many occurrences
--counterCap=255, -cs=255 cap kmer counts at this value
--singleStrand=False, -b=False do not add kmers from reverse complements of input sequences
--memLimitGb=8 Max memory to use, in GB
--memLimitLaxness=0 How strict is –memLimitGb? 0=strict, 1=lax, 2=even more lax
viral-ngs Documentation, Release v1.25.0-8-ge144969e

Possible choices: 0, 1, 2

--threads Number of threads (default: all available cores)

--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

dump_kmer_counts

Dump kmers and their counts from kmer database to a text file

```bash
usage: kmer_utils.py dump_kmer_counts [-h] [--minOccs MIN_OCCS]
                    [--maxOccs MAX_OCCS] [--threads THREADS]
                    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
                    [--version] [--tmp_dir TMP_DIR]
                    [--tmp_dirKeep]
                    kmer_db out_kmers
```

Positional arguments:

- **kmer_db** kmer database (with or without .kmc_pre/.kmc_suf suffix)
- **out_kmers** text file to which to write the kmers

Options:

- **--minOccs=1, -ci=1** drop kmers with fewer than this many occurrences
- **--maxOccs=2147483647, -cx=2147483647** drop kmers with more than this many occurrences
- **--threads** Number of threads (default: all available cores)
- **--loglevel=INFO** Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V** show program’s version number and exit
- **--tmp_dir=/tmp** Base directory for temp files. [default: %%(default)s]
- **--tmp_dirKeep=False** Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

filter_reads

Filter reads based on their kmer contents.

Can also be used to filter contigs or reference sequences, but we’ll refer to filtering of reads in the documentation.

Note that “occurrence of a kmer” means “occurrence of the kmer or its reverse complement” if kmer_db was built with single_strand==False.
Inputs: kmer_db: the kmc kmer database in_reads: the reads to filter. can be a .fasta or .fastq or .bam; fasta or fastq can be compressed with gzip or bzip2. If a .bam, a read pair is kept if either mate passes the filter.

Outputs: out_reads: file to which filtered reads are written. type is determined from extension, same types as above are supported.

Params: db_min_occs: only consider database kmers with at least this count db_max_occs: only consider database kmers with at most this count read_min_occs: only keep reads with at least this many occurrences of kmers from database. read_max_occs: only keep reads with at most this many occurrences of kmers from database. read_min_occs_frac: only keep reads with at least this many occurrences of kmers from database, interpreted as a fraction of read length in kmers read_max_occs_frac: only keep reads with at most this many occurrences of kmers from the database, interpreted as a fraction of read length in kmers.

(Note: minimal read kmer content can be given as absolute counts or fraction of read length, but not both).

hard_mask: if True, in the output reads, kmers not passing the filter are replaced by Ns threads: use this many threads

Positional arguments:

kmer_db kmer database (with or without .kmc_pre/.kmc_suf suffix)
in_reads input reads, as fasta/fastq/bam
out_reads output reads

Options:

--dbMinOccs=1 ignore database kmers with count below this
--dbMaxOccs=2147483647 ignore database kmers with count above this
--readMinOccs=0 filter out reads with fewer than this many db kmers
--readMaxOccs=2147483647 filter out reads with more than this many db kmers
--readMinOccsFrac=0.0 filter out reads with fewer than this many db kmers, interpreted as fraction of read length
--readMaxOccsFrac=1.0 filter out reads with more than this many db kmers, interpreted as fraction of read length
--hardMask=False In the output reads, mask the invalid kmers
--threads Number of threads (default: all available cores)
--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

kmers_binary_op

Perform a simple binary operation on kmer sets.

```
usage: kmer_utils.py kmers_binary_op [-h] [--resultMinOccs RESULT_MIN_OCCS]
                                [--resultMaxOccs RESULT_MAX_OCCS]
                                [--resultCounterCap RESULT_COUNTER_CAP] [--threads THREADS]
                                [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
                                [--version] [--tmp_dir TMP_DIR]
                                [--tmp_dirKeep]
                                {intersect,union,kmers_subtract,counters_subtract}

kmer_db1 kmer_db2 kmer_db_out
```

Positional arguments:

- **op** binary operation to perform
 Possible choices: intersect, union, kmers_subtract, counters_subtract
- **kmer_db1** first kmer set
- **kmer_db2** second kmer set
- **kmer_db_out** output kmer db

Options:

- **--resultMinOccs**=1 from the result drop kmers with counts below this
- **--resultMaxOccs**=2147483647 from the result drop kmers with counts above this
- **--resultCounterCap**=255 cap output counters at this value
- **--threads** Number of threads (default: all available cores)
- **--loglevel**=INFO Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V** show program’s version number and exit
- **--tmp_dir=/tmp** Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False** Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

kmers_set_counts

Copy the kmer database, setting all kmer counts in the output to the given value.

1.3. Command line tools
usage: kmer_utils.py kmers_set_counts [-h] [--threads THREADS]
 [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep]
 kmer_db_in value kmer_db_out

Positional arguments:
 kmer_db_in input kmer db
 value all kmer counts in the output will be set to this value
 kmer_db_out output kmer db

Options:
 --threads Number of threads (default: all available cores)
 --loglevel Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
 --version show program’s version number and exit
 --tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
 --tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

1.3.8 reports.py - produce various metrics and reports

Functions to create reports from genomics pipeline data.

usage: reports.py subcommand

Sub-commands:
 assembly_stats

Fetch assembly-level statistics for a given sample

usage: reports.py assembly_stats [-h]
 [--cov_thresholds COV_THRESHOLDS [COV_THRESHOLDS ...]]
 [--assembly_dir ASSEMBLY_DIR]
 [--assembly_tmp ASSEMBLY_TMP]
 [--align_dir ALIGN_DIR]
 [--reads_dir READS_DIR]
 [--raw_reads_dir RAW_READS_DIR]
 [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
 [--version] [--tmp_dir TMP_DIR]
 [--tmp_dirKeep]
 samples [samples ...] outFile

Positional arguments:
 samples Sample names.
 outFile Output report file.
Options:

--cov_thresholds=(1, 5, 20, 100) Genome coverage thresholds to report on. (default: %%(default)s)
--assembly_dir=data/02_assembly Directory with assembly outputs. (default: %%(default)s)
--assembly_tmp=tmp/02_assembly Directory with assembly temp files. (default: %%(default)s)
--align_dir=data/02_align_to_self Directory with reads aligned to own assembly. (default: %%(default)s)
--reads_dir=data/01_per_sample Directory with unaligned filtered read BAMs. (default: %%(default)s)
--raw_reads_dir=data/00_raw Directory with unaligned raw read BAMs. (default: %%(default)s)
--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

coverage_only

```
usage: reports.py coverage_only [-h]
    [--cov_thresholds COV_THRESHOLDS [COV_THRESHOLD ...]]
    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
    [--version] [--tmp_dir TMP_DIR]
    [--tmp_dirKeep]
    mapped_bams [mapped_bams ...] out_report
```

Positional arguments:

mapped_bams Aligned-to-self mapped bam files.
out_report Output report file.

Options:

--cov_thresholds=(1, 5, 20, 100) Genome coverage thresholds to report on. (default: %%(default)s)
--loglevel=INFO Verboseness of output. [default: %%(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.
alignment_summary

Write or print pairwise alignment summary information for sequences in two FASTA files, including SNPs, ambiguous bases, and indels.

```bash
```

Positional arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inFastaFileOne</td>
<td>First fasta file for an alignment</td>
</tr>
<tr>
<td>inFastaFileTwo</td>
<td>First fasta file for an alignment</td>
</tr>
</tbody>
</table>

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--outfileName</td>
<td>Output file for counts in TSV format</td>
</tr>
<tr>
<td>--printCounts</td>
<td>Undocumented</td>
</tr>
<tr>
<td>--loglevel</td>
<td>Verboseness of output. [default: %(default)s] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION</td>
</tr>
<tr>
<td>--version</td>
<td>show program’s version number and exit</td>
</tr>
<tr>
<td>--tmp_dir</td>
<td>Base directory for temp files. [default: %(default)s]</td>
</tr>
<tr>
<td>--tmp_dirKeep</td>
<td>Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.</td>
</tr>
</tbody>
</table>

consolidate_fastqc

Consolidate multiple FASTQC reports into one.

```bash
```

Positional arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inDirs</td>
<td>Input FASTQC directories.</td>
</tr>
<tr>
<td>outFile</td>
<td>Output report file.</td>
</tr>
</tbody>
</table>

Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--loglevel</td>
<td>Verboseness of output. [default: %(default)s] Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION</td>
</tr>
<tr>
<td>--version</td>
<td>show program’s version number and exit</td>
</tr>
<tr>
<td>--tmp_dir</td>
<td>Base directory for temp files. [default: %(default)s]</td>
</tr>
<tr>
<td>--tmp_dirKeep</td>
<td>Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.</td>
</tr>
</tbody>
</table>
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. De-
dfault is to delete all temp files at the end, even if there’s a failure.

consolidate_spike_count

Consolidate multiple spike count reports into one.

```
usage: reports.py consolidate_spike_count [-h]
          [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
          [--version] [--tmp_dir TMP_DIR]
          [--tmp_dirKeep]
inDir outFile
```

Positional arguments:

- **in_dir** Input spike count directory.
- **out_file** Output report file.

Options:

- **--loglevel=INFO** Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-
 ICAL, EXCEPTION
- **--version, -V** show program’s version number and exit
- **--tmp_dir=/tmp** Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False** Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.

aggregate_spike_count

aggregate multiple spike count reports into one.

```
usage: reports.py aggregate_spike_count [-h]
          [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
          [--version] [--tmp_dir TMP_DIR]
          [--tmp_dirKeep]
inDir outFile
```

Positional arguments:

- **in_dir** Input spike count directory.
- **out_file** Output report file.

Options:

- **--loglevel=INFO** Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-
 ICAL, EXCEPTION
- **--version, -V** show program’s version number and exit
- **--tmp_dir=/tmp** Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False** Keep the tmp_dir if an exception occurs while running. De-
 fault is to delete all temp files at the end, even if there’s a failure.
plot_coverage

Generate a coverage plot from an aligned bam file

Positional arguments:

 in_bam Input reads, BAM format.
 out_plot_file The generated chart file

Options:

 --plotFormat File format of the coverage plot. By default it is inferred from the file extension of out_plot_file, but it can be set explicitly via --plotFormat. Valid formats include: ps, eps, pdf, pgf, png, raw, rgba, svg, svgz, jpg, jpeg, tif, tiff

 Possible choices: ps, eps, pdf, pgf, png, raw, rgba, svg, svgz, jpg, jpeg, tif, tiff

 --plotDataStyle=filled The plot data display style. Valid options: filled, line, dots
 (default: %(default)s)

 Possible choices: filled, line, dots

 --plotWidth=880 Width of the plot in pixels (default: %%(default)s)
align_and_plot_coverage

Take reads, align to reference with BWA-MEM, and generate a coverage plot

1.3. Command line tools 67
Positional arguments:

in_bam
Input reads, BAM format.

out_plot_file
The generated chart file

ref_fasta
Reference genome, FASTA format.

Options:

--plotFormat
File format of the coverage plot. By default it is inferred from
the file extension of out_plot_file, but it can be set explicitly via
--plotFormat. Valid formats include: ps, eps, pdf, pgf, png, raw,
rgb, svg, svgz, jpg, jpeg, tif, tiff

Possible choices: ps, eps, pdf, pgf, png, raw, rgb, svg, svgz, jpg,
jpeg, tif, tiff

--plotDataStyle=filled
The plot data display style. Valid options: filled, line, dots
(default: %(default)s)

Possible choices: filled, line, dots

--plotStyle=ggplot
The plot visual style. Valid options: seaborn-white, seaborn-
pastel, seaborn-deep, seaborn-darkgrid, dark_background,
seaborn-paper, grayscale, seaborn-mutated, tableau-colorblind10,
fivethirtyeight, seaborn-poster, seaborn, fast, seaborn-dark,
seaborn-whitegrid, bmh, seaborn-bright, seaborn-dark-palette,
_classic_test, ggplot, seaborn-notebook, seaborn-colorblind,
Solarize_Light2, classic, seaborn-talk, seaborn-ticks (default:
%(default)s)

Possible choices: seaborn-white, seaborn-pastel, seaborn-deep,
seaborn-darkgrid, dark_background, seaborn-paper, grayscale,
seaborn-mutated, tableau-colorblind10, fivethirtyeight, seaborn-
poster, seaborn, fast, seaborn-dark, seaborn-whitegrid, bmh,
seaborn-bright, seaborn-dark-palette, _classic_test, ggplot,
seaborn-notebook, seaborn-colorblind, Solarize_Light2, classic,
seaborn-talk, seaborn-ticks
--plotWidth=880 Width of the plot in pixels (default: %%(default)s)
--plotHeight=680 Width of the plot in pixels (default: %%(default)s)
--plotDPI=100.0 dots per inch for rendered output, more useful for vector modes (default: %%(default)s)
--plotTitle=C

coverage Plot The title displayed on the coverage plot (default: ‘%%(default)s’)
--plotXLimits Limits on the x-axis of the coverage plot; args are ‘<min> <max>’
--plotYLimits Limits on the y-axis of the coverage plot; args are ‘<min> <max>’
-q The minimum base quality threshold
-Q The minimum mapping quality threshold
-m The max coverage depth (default: %%(default)s)
-l Read length threshold
--binLargePlots=False Plot summary read depth in one-pixel-width bins for large plots.
--binningSummaryStatistic=max Statistic used to summarize each bin (max or min).
 Possible choices: max, min
--outSummary Coverage summary TSV file. Default is to write to temp.
--outBam Output aligned, indexed BAM file. Default is to write to temp.
--sensitive=False Equivalent to giving bwa: ‘-k 12 -A 1 -B 1 -O 1 -E 1’. Only relevant if the bwa aligner is selected (the default).
--excludeDuplicates=False MarkDuplicates with Picard and only plot non-duplicates
--JVMmemory=2g JVM virtual memory size (default: %%(default)s)
--picardOptions=[] Optional arguments to Picard’s MarkDuplicates, OPTION-NAME=value ...
--minScoreToFilter Filter bwa alignments using this value as the minimum allowed alignment score. Specifically, sum the alignment scores across all alignments for each query (including reads in a pair, supplementary and secondary alignments) and then only include, in the output, queries whose summed alignment score is at least this value. This is only applied when the aligner is ‘bwa’. The filtering on a summed alignment score is sensible for reads in a pair and supplementary alignments, but may not be reasonable if bwa outputs secondary alignments (i.e., if ‘-a’ is in the aligner options). (default: not set - i.e., do not filter bwa’s output)
--aligner=bwa aligner (default: %%(default)s)
 Possible choices: novoalign, bwa
--aligner_options aligner options (default for novoalign: “-r Random -l 40 -g 40 -x 20 -t 100 -k”, bwa: bwa defaults
--NOVOALIGN_LICENSE_PATH A path to the novoalign.lic file. This overrides the NOVOALIGN_LICENSE_PATH environment variable. (default: %(default)s)

--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

fastqc

usage: reports.py fastqc [-h] inBam outHtml

Positional arguments:
inBam Input reads, BAM format.
outHtml Output report, HTML format.

1.3.9 illumina.py - for raw Illumina outputs

Utilities for demultiplexing Illumina data.

usage: illumina.py subcommand

Sub-commands:

illumina_demux

Read Illumina runs & produce BAM files, demultiplexing to one bam per sample, or for simplex runs, a single bam will be produced bearing the flowcell ID. Wraps together Picard’s ExtractBarcodes (for multiplexed samples) and IlluminaBasecallsToSam while handling the various required input formats. Also can read Illumina BCL directories, tar.gz BCL directories.

usage: illumina.py illumina_demux [-h] [--outMetrics OUTMETRICS]
[--commonBarcodes COMMONBARCODES]
[--sampleSheet SAMPLESHEET]
[--runInfo RUNINFO] [--flowcell FLOWCELL]
[--read_structure READ_STRUCTURE]
[--max_mismatches MAX_MISMATCHES]
[--minimum_base_quality MINIMUM_BASE_QUALITY]
[--min_mismatch_delta MIN_MISMATCH_DELTA]
[--max_no_calls MAX_NO_CALLS]
[--minimum_quality MINIMUM_QALUALITY]
[--compress_outputs COMPRESS_OUTPUTS]
[--sequencing_center SEQUENCING_CENTER]
[--adapters_to_check ADAPTERS_TO_CHECK]
[--platform PLATFORM]
[--max_reads_in_ram_per_tile MAX_READS_IN_RAM]
[--max_records_in_ram MAX_RECORDS_IN_RAM]
Positional arguments:

- **inDir**
 Illumina BCL directory (or tar.gz of BCL directory). This is the top-level run directory.

- **lane**
 Lane number.

- **outDir**
 Output directory for BAM files.

Options:

- **--outMetrics**
 Output ExtractIlluminaBarcodes metrics file. Default is to dump to a temp file.

- **--commonBarcodes**
 Write a TSV report of all barcode counts, in descending order. Only applicable for read structures containing “B”

- **--sampleSheet**
 Override SampleSheet. Input tab or CSV file w/header and four named columns: barcode_name, library_name, barcode_sequence_1, barcode_sequence_2. Default is to look for a SampleSheet.csv in the inDir.

- **--runInfo**
 Override RunInfo. Input xml file. Default is to look for a RunInfo.xml file in the inDir.

- **--flowcell**
 Override flowcell ID (default: read from RunInfo.xml).

- **--read_structure**
 Override read structure (default: read from RunInfo.xml).

- **--max_mismatches=0**
 Picard ExtractIlluminaBarcodes MAX_MISMATCHES (default: %(default)s)

- **--minimum_base_quality=20**
 Picard ExtractIlluminaBarcodes MINIMUM_BASE_QUALITY (default: %(default)s)

- **--min_mismatch_delta**
 Picard ExtractIlluminaBarcodes MIN_MISMATCH_DELTA (default: %(default)s)

- **--max_no_calls**
 Picard ExtractIlluminaBarcodes MAX_NO_CALLS (default: %(default)s)

- **--minimum_quality**
 Picard ExtractIlluminaBarcodes MINIMUM_QUALITY (default: %(default)s)

- **--compress_outputs**
 Picard ExtractIlluminaBarcodes COMPRESS_OUTPUTS (default: %(default)s)
--sequencing_center Picard IlluminaBasecallsToSam SEQUENCING_CENTER (default: %(default)s)

--adapters_to_check=('PAIRED_END', 'NEXTERA_V1', 'NEXTERA_V2') Picard IlluminaBasecallsToSam ADAPTERS_TO_CHECK (default: %(default)s)

--platform Picard IlluminaBasecallsToSam PLATFORM (default: %(default)s)

--max_reads_in_ram_per_tile=1000000 Picard IlluminaBasecallsToSam MAX_READS_IN_RAM_PER_TILE (default: %(default)s)

--max_records_in_ram=2000000 Picard IlluminaBasecallsToSam MAX_RECORDS_IN_RAM (default: %(default)s)

--apply_eamss_filter Picard IlluminaBasecallsToSam APPLY_EAMSS_FILTER (default: %(default)s)

--force_gc Picard IlluminaBasecallsToSam FORCE_GC (default: %(default)s)

--first_tile Picard IlluminaBasecallsToSam FIRST_TILE (default: %(default)s)

--tile_limit Picard IlluminaBasecallsToSam TILE_LIMIT (default: %(default)s)

--include_non_pf_reads=False Picard IlluminaBasecallsToSam INCLUDE_NON_PF_READS (default: %(default)s)

--run_start_date Picard IlluminaBasecallsToSam RUN_START_DATE (default: %(default)s)

--read_group_id Picard IlluminaBasecallsToSam READ_GROUP_ID (default: %(default)s)

--compression_level=7 Picard IlluminaBasecallsToSam COMPRESSION_LEVEL (default: %(default)s)

--JVMmemory=7g JVM virtual memory size (default: %(default)s)

--threads=0 Number of threads (default: 0)

--loglevel=INFO Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

lane_metrics

Write out lane metrics to a tsv file.

```

[--version] [--tmp_dir TMP_DIR]
```
Positional arguments:

inDir
Illumina BCL directory (or tar.gz of BCL directory). This is the top-level run directory.

outPrefix
Prefix path to the *.illumina_lane_metrics and *.illumina_phasing_metrics files.

Options:

--read_structure
Override read structure (default: read from RunInfo.xml).

--JVMmemory=8g
JVM virtual memory size (default: %%(default)s)

--loglevel=INFO
Verboseness of output. [default: %%(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V
show program’s version number and exit

--tmp_dir=/tmp
Base directory for temp files. [default: %%(default)s]

--tmp_dirKeep=False
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

common_barcodes

Extract Illumina barcodes for a run and write a TSV report of the barcode counts in descending order

```
usage: illumina.py common_barcodes [-h] [--truncateToLength TRUNCATETOLENGTH]  
    [--omitHeader] [--includeNoise]  
    [--outMetrics OUTMETRICS]  
    [--sampleSheet SAMPLESHEET]  
    [--flowcell FLOWCELL]  
    [--read_structure READ_STRUCTURE]  
    [--max_mismatches MAX_MISMATCHES]  
    [--minimum_base_quality MINIMUM_BASE_QUALITY]  
    [--min_mismatch_delta MIN_MISMATCH_DELTA]  
    [--max_no_calls MAX_NO_CALLS]  
    [--minimum_quality MINIMUM_QUALITY]  
    [--compress_outputs COMPRESS_OUTPUTS]  
    [--JVMmemory JVMMEMORY]  
    [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]  
    [--version]  
    [--tmp_dir TMP_DIR]  
    [--tmp_dirKeep]  
    inDir lane outSummary
```

Positional arguments:

inDir
Illumina BCL directory (or tar.gz of BCL directory). This is the top-level run directory.

lane
Lane number.

outSummary
Path to the summary file (.tsv format). It includes several columns: (barcode1, likely_index_name1, barcode2, likely_index_name2, count), where likely index names are either
the exact match index name for the barcode sequence, or those Hamming distance of 1 away.

Options:

--truncateToLength If specified, only this number of barcodes will be returned. Useful if you only want the top N barcodes.

--omitHeader=False If specified, a header will not be added to the outSummary tsv file.

--includeNoise=False If specified, barcodes with periods (".") will be included.

--outMetrics Output ExtractIlluminaBarcodes metrics file. Default is to dump to a temp file.

--sampleSheet Override SampleSheet. Input tab or CSV file w/header and four named columns: barcode_name, library_name, barcode_sequence_1, barcode_sequence_2. Default is to look for a SampleSheet.csv in the inDir.

--flowcell Override flowcell ID (default: read from RunInfo.xml).

--read_structure Override read structure (default: read from RunInfo.xml).

--max_mismatches=0 Picard ExtractIlluminaBarcodes MAX_MISMATCHES (default: %%(default)s)

--minimum_base_quality=20 Picard ExtractIlluminaBarcodes MINIMUM_BASE_QUALITY (default: %%(default)s)

--min_mismatch_delta Picard ExtractIlluminaBarcodes MIN_MISMATCH_DELTA (default: %%(default)s)

--max_no_calls Picard ExtractIlluminaBarcodes MAX_NO_CALLS (default: %%(default)s)

--minimum_quality Picard ExtractIlluminaBarcodes MINIMUM_QUALITY (default: %%(default)s)

--compress_outputs Picard ExtractIlluminaBarcodes COMPRESS_OUTPUTS (default: %%(default)s)

--JVMmemory=8g JVM virtual memory size (default: %%(default)s)

--loglevel=INFO Verboseness of output. [default: %%(default)s]

--version, -V show program’s version number and exit

--tmp_dir=/tmp Base directory for temp files. [default: %%(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

guess_barcodes

Guess the barcode value for a sample name, based on the following: - a list is made of novel barcode pairs seen in the data, but not in the picard metrics - for the sample in question, get the most abundant novel barcode pair where one of the barcodes seen in the data matches one of the barcodes in the picard metrics (partial match) - if there are no partial matches, get the most abundant novel barcode pair
Limitations: - If multiple samples share a barcode with multiple novel barcodes, disentangling them is difficult or impossible

The names of samples to guess are selected: - explicitly by name, passed via argument, OR - explicitly by read count threshold, OR - automatically (if names or count threshold are omitted) based on basic outlier detection of deviation from an assumed-balanced pool with some number of negative controls

```
usage: illumina.py guess_barcodes [-h]
        [--readcount_threshold READCOUNT_THRESHOLD]
        [--sample_names SAMPLE_NAMES [SAMPLE_NAMES ...]]
        [--outlier_threshold OUTLIER_THRESHOLD]
        [--expected_assigned_fraction EXPECTED_ASSIGNED_FRACTION]
        [--number_of_negative_controls NUMBER_OF_NEGATIVE_CONTROLS]
        [--rows_limit ROWS_LIMIT]
        [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
        [--version] [--tmp_dir TMP_DIR]
        in_barcodes in_picard_metrics
        out_summary_tsv
```

Positional arguments:

- **in_barcodes** The barcode counts file produced by common_barcodes.
- **in_picard_metrics** The demultiplexing read metrics produced by Picard.
- **out_summary_tsv** Path to the summary file (.tsv format). It includes several columns: (sample_name, expected_barcode_1, expected_barcode_2, expected_barcode_1_name, expected_barcode_2_name, expected_barcodes_read_count, guessed_barcode_1, guessed_barcode_2, guessed_barcode_1_name, guessed_barcode_2_name, guessed_barcodes_read_count, match_type), where the expected values are those used by Picard during demultiplexing and the guessed values are based on the barcodes seen among the data.

Options:

- **--readcount_threshold** If specified, guess barcodes for samples with fewer than this many reads.
- **--sample_names** If specified, only guess barcodes for these sample names.
- **--outlier_threshold=0.675** threshold of how far from unbalanced a sample must be to be considered an outlier.
- **--expected_assigned_fraction=0.7** The fraction of reads expected to be assigned. An exception is raised if fewer than this fraction are assigned.
- **--number_of_negative_controls=1** The number of negative controls in the pool, for calculating expected number of reads in the rest of the pool.
- **--rows_limit=1000** The number of rows to use from the in_barcodes.
- **--loglevel=INFO** Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
--version, -V show program’s version number and exit
--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]
--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

miseq_fastq_to_bam

Convert fastq read files to a single bam file. Fastq file names must conform to patterns emitted by Miseq machines. Sample metadata must be provided in a SampleSheet.csv that corresponds to the fastq filename. Specifically, the _S##_ index in the fastq file name will be used to find the corresponding row in the SampleSheet.

```
usage: illumina.py miseq_fastq_to_bam [-h] [--inFastq2 INFASTQ2]        
        [--runInfo RUNINFO]        
        [--sequencing_center SEQUENCING_CENTER]        
        [--JVMmemory JVMMEMORY]        
        [--loglevel=DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION]        
        [--version] [--tmp_dir TMP_DIR]        
        [--tmp_dirKeep]        
        outBam sampleSheet inFastq1
```

Positional arguments:
- **outBam**: Output BAM file.
- **sampleSheet**: Input SampleSheet.csv file.
- **inFastq1**: Input fastq file; 1st end of paired-end reads if paired.

Options:
- **--inFastq2**: Input fastq file; 2nd end of paired-end reads.
- **--runInfo**: Input RunInfo.xml file.
- **--sequencing_center**: Name of your sequencing center (default is the sequencing machine ID from the RunInfo.xml).
- **--JVMmemory=2g**: JVM virtual memory size (default: %(default)s)
- **--loglevel=INFO**: Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V**: show program’s version number and exit
- **--tmp_dir=/tmp**: Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False**: Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

extract_fc_metadata

Extract RunInfo.xml and SampleSheet.csv from the provided Illumina directory.

```
usage: illumina.py extract_fc_metadata [-h]        
        [--loglevel=DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION]        
        [--version] [--tmp_dir TMP_DIR]        
        [--tmp_dirKeep]        
        flowcell outRunInfo outSampleSheet
```

76 Chapter 1. Contents
Positional arguments:

- **flowcell** Illumina directory (possibly tarball)
- **outRunInfo** Output RunInfo.xml file.
- **outSampleSheet** Output SampleSheet.csv file.

Options:

- **--loglevel=INFO** Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- **--version, -V** show program’s version number and exit
- **--tmp_dir=/tmp** Base directory for temp files. [default: %(default)s]
- **--tmp_dirKeep=False** Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

1.3.10 broad_utils.py - for data generated at the Broad Institute

Utilities for getting sequences out of the Broad walk-up sequencing pipeline. These utilities are probably not of much use outside the Broad.

usage: broad_utils.py subcommand

Sub-commands:

get_bustard_dir

Find the basecalls directory from a Picard directory

usage: broad_utils.py get_bustard_dir [-h]

```
[--loglevel={DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
```

Positional arguments:

- **inDir** Picard directory

Options:

- **--loglevel=ERROR** Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

get_run_date

Find the sequencing run date from a Picard directory

usage: broad_utils.py get_run_date [-h]

```
[--loglevel={DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
```

Positional arguments:

- **inDir** Picard directory
Options:

--loglevel=ERROR Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

get_all_names

Get all samples

usage: broad_utils.py get_all_names [-h]

--loglevel=ERROR Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

Positional arguments:

type Type of name

Possible choices: samples, libraries, runs

runfile File with seq run information

Options:

--loglevel=ERROR Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

1.3.11 ncbi.py - utilities to interact with NCBI

This script contains a number of utilities for submitting our analyses to NCBI’s Genbank and SRA databases, as well as retrieving records from Genbank.

usage: ncbi.py subcommand

Sub-commands:

tbl_transfer

This function takes an NCBI TBL file describing features on a genome (genes, etc) and transfers them to a new genome.

usage: ncbi.py tbl_transfer [-h] [--oob_clip] [--ignoreAmbigFeatureEdge]

--tmp_dir TMP_DIR [--tmp_dirKeep]

--loglevel

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

[-version]

ref_fasta ref_tbl alt_fasta out_tbl

Positional arguments:

ref_fasta Input sequence of reference genome

ref_tbl Input reference annotations (NCBI TBL format)

alt_fasta Input sequence of new genome

out_tbl Output file with transferred annotations

Options:
--oob_clip=False Out of bounds feature behavior. False: drop all features that are completely or partly out of bounds True: drop all features completely out of bounds but truncate any features that are partly out of bounds

--ignoreAmbigFeatureEdge=False Ambiguous feature behavior. False: features specified as ambiguous (“<####” or “>####”) are mapped, where possible True: features specified as ambiguous (“<####” or “>####”) are interpreted as exact values

--tmp_dir=/tmp Base directory for temp files. [default: %default]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

--loglevel=INFO Verboseness of output. [default: %default]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

tbl_transfer_prealigned

This breaks out the ref and alt sequences into separate fasta files, and then creates unified files containing the reference sequence first and the alt second. Each of these unified files is then passed as a cmap to tbl_transfer_common.

This function expects to receive one fasta file containing a multialignment of a single segment/chromosome along with the respective reference sequence for that segment/chromosome. It also expects a reference containing all reference segments/chromosomes, so that the reference sequence can be identified in the input file by name. It also expects a list of reference tbl files, where each file is named according to the ID present for its corresponding sequence in the refFasta. For each non-reference sequence present in the inputFasta, two files are written: a fasta containing the segment/chromosome for the same, along with its corresponding feature table as created by tbl_transfer_common.

Positional arguments:

inputFasta FASTA file containing input sequences, including pre-made alignments and reference sequence

refFasta FASTA file containing the reference genome

refAnnotTblFiles Name of the reference feature tables, each of which should have a filename comprised of [refId].tbl so they can be matched against the reference sequences

outputDir The output directory

Options:

--oob_clip=False Out of bounds feature behavior. False: drop all features that are completely or partly out of bounds True: drop all features
completely out of bounds but truncate any features that are partly out of bounds

--ignoreAmbigFeatureEdge=False Ambiguous feature behavior. False: features specified as ambiguous ("<####" or ">####") are mapped, where possible True: features specified as ambiguous ("<####" or ">####") are interpreted as exact values

--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

--loglevel=INFO Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

fetch_fastas

This function downloads and saves the FASTA files from the Genbank CoreNucleotide database given a given list of accession IDs.

```
usage: ncbi.py fetch_fastas [-h] [--api_key API_KEY] [--forceOverwrite]
  [--combinedFilePrefix COMBINEDFILEPREFIX] [--fileExt FILEEXT]
  [--removeSeparateFiles] [--chunkSize CHUNKSIZE] [--tmp_dir TMP_DIR]
  [--tmp_dirKeep] [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
  [--version]
  emailAddress destinationDir accession_IDs ...
```

Positional arguments:

- emailAddress Your email address. To access Genbank databases, NCBI requires you to specify your email address with each request. In case of excessive usage of the E-utils, NCBI will attempt to contact a user at the email address provided before blocking access. This email address should be registered with NCBI. To register an email address, simply send an email to eutils@ncbi.nlm.nih.gov including your email address and the tool name (tool='https://github.com/broadinstitute/viral-ngs').

- destinationDir Output directory with where .fasta and .tbl files will be saved

- accession_IDs List of Genbank nuccore accession IDs

Options:

- --api_key Your NCBI API key. If an API key is not provided, NCBI requests are limited to 3/second. If an API key is provided, requests may be submitted at a rate up to 10/second. For more information, see: https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities/

- --forceOverwrite=False Overwrite existing files, if present.
--combinedFilePrefix The prefix of the file containing the combined concatenated results returned by the list of accession IDs, in the order provided.

--fileExt The extension to use for the downloaded files

--removeSeparateFiles=False If specified, remove the individual files and leave only the combined file.

--chunkSize=1 Causes files to be downloaded from GenBank in chunks of N accessions. Each chunk will be its own combined file, separate from any combined file created via --combinedFilePrefix (default: %(default)s). If chunkSize is unspecified and >500 accessions are provided, chunkSize will be set to 500 to adhere to the NCBI guidelines on information retrieval.

--tmp_dir=/tmp Base directory for temp files. [default: %(default)s]

--tmp_dirKeep=False Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

--loglevel=INFO Verboseness of output. [default: %(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

fetch_feature_tables

This function downloads and saves feature tables from the Genbank CoreNucleotide database given a given list of accession IDs.

e-mailAddress destinationDir accession_IDs
[accession_IDs ...]

Positional arguments:

 emailAddress Your email address. To access Genbank databases, NCBI requires you to specify your email address with each request. In case of excessive usage of the E-utils, NCBI will attempt to contact a user at the email address provided before blocking access. This email address should be registered with NCBI. To register an email address, simply send an email to eutils@ncbi.nlm.nih.gov including your email address and the tool name (tool='https://github.com/broadinstitute/viral-ngs').

definitionDir Output directory with where .fasta and .tbl files will be saved

 accession_IDs List of Genbank nucore accession IDs

Options:
--api_key

Your NCBI API key. If an API key is not provided, NCBI requests are limited to 3/second. If an API key is provided, requests may be submitted at a rate up to 10/second. For more information, see: https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities/

--forceOverwrite=False

Overwrite existing files, if present.

--combinedFilePrefix

The prefix of the file containing the combined concatenated results returned by the list of accession IDs, in the order provided.

--fileExt

The extension to use for the downloaded files

--removeSeparateFiles=False

If specified, remove the individual files and leave only the combined file.

--chunkSize=1

Causes files to be downloaded from GenBank in chunks of N accessions. Each chunk will be its own combined file, separate from any combined file created via --combinedFilePrefix (default: %%(default)s). If chunkSize is unspecified and >500 accessions are provided, chunkSize will be set to 500 to adhere to the NCBI guidelines on information retrieval.

--tmp_dir=/tmp

Base directory for temp files. [default: %%(default)s]

--tmp_dirKeep=False

Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

--loglevel=INFO

Verboseness of output. [default: %%(default)s]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V

show program’s version number and exit

fetch_genbank_records

This function downloads and saves full flat text records from Genbank CoreNucleotide database given a given list of accession IDs.

Positional arguments:

emailAddress

Your email address. To access Genbank databases, NCBI requires you to specify your email address with each request. In case of excessive usage of the E-utils, NCBI will attempt to contact a user at the email address provided before blocking access. This email address should be registered with NCBI.
To register an email address, simply send an email to eutils@ncbi.nlm.nih.gov including your email address and the tool name (tool='https://github.com/broadinstitute/viral-ngs').

destinationDir
Output directory with where .fasta and .tbl files will be saved

accession_IDs
List of Genbank nuccore accession IDs

Options:

--- **--api_key**
Your NCBI API key. If an API key is not provided, NCBI requests are limited to 3/second. If an API key is provided, requests may be submitted at a rate up to 10/second. For more information, see: https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities/

--- **--forceOverwrite=False**
Overwrite existing files, if present.

--- **--combinedFilePrefix**
The prefix of the file containing the combined concatenated results returned by the list of accession IDs, in the order provided.

--- **--fileExt**
The extension to use for the downloaded files

--- **--removeSeparateFiles=False**
If specified, remove the individual files and leave only the combined file.

--- **--chunkSize=1**
Causes files to be downloaded from GenBank in chunks of N accessions. Each chunk will be its own combined file, separate from any combined file created via --combinedFilePrefix (default: %default). If chunkSize is unspecified and >500 accessions are provided, chunkSize will be set to 500 to adhere to the NCBI guidelines on information retrieval.

--- **--tmp_dir=/tmp**
Base directory for temp files. [default: %default]

--- **--tmp_dirKeep=False**
Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.

--- **--loglevel=INFO**
Verboseness of output. [default: %default]

Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--- **--version, -V**
show program’s version number and exit

prep_genbank_files

Prepare genbank submission files. Requires .fasta and .tbl files as input, as well as numerous other metadata files for the submission. Creates a directory full of files (.sqn in particular) that can be sent to GenBank.

usage:

```
ncbi.py prep_genbank_files [-h] [--comment COMMENT]
    [--sequencing_tech SEQUENCING_TECH]
    [--master_source_table MASTER_SOURCE_TABLE]
    [--organism ORGANISM] [--mol_type MOL_TYPE]
    [--biosample_map BIOSAMPLE_MAP]
    [--coverage_table COVERAGE_TABLE]
    [--tmp_dir TMP_DIR] [--tmp_dirKeep]
    [--loglevel]
    →[DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION]}
    [--version]
    templateFile fasta_files [fasta_files ...]
    annotDir
```
Positional arguments:

- `templateFile` Submission template file (.sbt) including author and contact info
- `fasta_files` Input fasta files
- `annotDir` Output directory with genbank submission files (.tbl files must already be there)

Options:

- `--comment` comment field
- `--sequencing_tech` sequencing technology (e.g. Illumina HiSeq 2500)
- `--master_source_table` source modifier table
- `--organism` species name
- `--mol_type` molecule type
- `--biosample_map` A file with two columns and a header: sample and BioSample. This file may refer to samples that are not included in this submission.
- `--coverage_table` A genome coverage report file with a header row. The table must have at least two columns named sample and aln2self_cov_median. All other columns are ignored. Rows referring to samples not in this submission are ignored.
- `--tmp_dir=/tmp` Base directory for temp files. [default: %(default)s]
- `--tmp_dirKeep=False` Keep the tmp_dir if an exception occurs while running. Default is to delete all temp files at the end, even if there’s a failure.
- `--loglevel=INFO` Verboseness of output. [default: %(default)s]
 Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION
- `--version, -V` show program’s version number and exit

`prep_sra_table`

This is a very lazy hack that creates a basic table that can be pasted into various columns of an SRA submission spreadsheet. It probably doesn’t work in all cases.

```
usage: ncbi.py prep_sra_table [-h]

    [-loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
    [--version]

lib_fname biosampleFile md5_fname outFile
```

Positional arguments:

- `lib_fname` A file that lists all of the library IDs that will be submitted in this batch
- `biosampleFile` A file with two columns and a header: sample and BioSample. This file may refer to samples that are not included in this submission.
- `md5_fname` A file with two columns and no header. Two columns are MD5 checksum and filename. Should contain an entry for every bam
file being submitted in this batch. This is typical output from
“md5sum *.cleaned.bam”.

Options:

outFile Output table that contains most of the variable columns needed
for SRA submission.

Options:

--loglevel=INFO Verboseness of output. [default: %(default)s]
Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL, EXCEPTION

--version, -V show program’s version number and exit

1.3.12 file_utils.py - utilities to perform various file manipulations

Utilities for dealing with files.

Usage:

```
usage: file_utils.py subcommand
```

Sub-commands:

merge_tarballs

Merges separate tarballs into one tarball data can be piped in and/or out

```
usage: file_utils.py merge_tarballs [-h]
     [--extractToDiskPath EXTRACT_TO_DISK_PATH]
     [--pipeInHint PIPE_HINT_IN]
     [--pipeOutHint PIPE_HINT_OUT]
     [--threads THREADS]
     [--loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXCEPTION}]
     [--version] [--tmp_dir TMP_DIR]
     [--tmp_dirKeep]
     out_tarball in_tarballs [in_tarballs ...]
```

Positional arguments:

out_tarball output tarball (*.tar.gz|*.tar.lz4|*.tar.bz2|-); compression is in-
ferred by the file extension. Note: if “-” is used, output will
be written to stdout and --pipeOutHint must be provided to indi-
cate compression type when compression type is not gzip (gzip
is used by default).

in_tarballs input tarballs (*.tar.gz|*.tar.lz4|*.tar.bz2)

Options:

--extractToDiskPath If specified, the tar contents will also be extracted to a local
directory.

--pipeInHint=gz If specified, the compression type used is used for piped input.

--pipeOutHint=gz If specified, the compression type used is used for piped output.

--threads Number of threads (default: all available cores)

--loglevel=INFO Verboseness of output. [default: %(default)s]
1.4 Using the WDL pipelines

Rather than chaining together viral-ngs pipeline steps as series of tool commands called in isolation, it is possible to execute them as a complete automated pipeline, from processing raw sequencer output to creating files suitable for GenBank submission. This utilizes the Workflow Description Language, which is documented at: https://github.com/openwdl/wdl

This documentation is not yet complete

1.4.1 Executing WDL workflows locally with Cromwell

See example here: https://github.com/broadinstitute/viral-ngs/blob/master/travis/tests-cromwell.sh

1.4.2 Executing WDL workflows on Google Cloud Platform with Cromwell

This should help: https://github.com/broadinstitute/viral-ngs/blob/master/pipes/WDL/cromwell.gcid-viral-seq.conf

1.4.3 Executing WDL workflows on FireCloud

More info later

1.4.4 Executing WDL workflows on DNAnexus

This is the primary mode of execution for many of our collaborators and lab members. You can obtain the latest versions here: https://platform.dnanexus.com/projects/F8PQ6380xf5bK0Qk0YPjB17P/data/

1.5 Using the Snakemake pipelines

Rather than chaining together viral-ngs pipeline steps as series of tool commands called in isolation, it is possible to execute them as a complete automated pipeline, from processing raw sequencer output to creating files suitable for GenBank submission. This utilizes Snakemake, which is documented at: https://snakemake.readthedocs.io/en/stable/

Here is an overview of the Snakemake rule graph:
1.5. Using the Snakemake pipelines
1.5.1 Installation instructions

It is recommended to install the viral-ngs conda package from the `broad-viral` channel, as detailed in the installation section of this documentation.

The script `easy-deploy-viral-ngs.sh` can be used to install conda and the viral-ngs package on a standard Linux system, as well as to create new project analysis directories. Project directories can also be created manually as described below.

1.5.2 Setting up an analysis directory

Copying and creating project directories and files

The Snakemake pipeline is intended to be run on an input one or more sequencer bam files, each having a filename representing a sample name. The output files are named with the same sample names, and are organized into folders corresponding to the steps of the pipeline in which they were created.

To get started, create an analysis directory somewhere in your compute environment to contain the pipeline input and output files.

Into this directory, copy the following file from the `viral-ngs/pipes` directory:

```yaml
config.yaml
Snakefile
```

Since the file `config.yaml` is project-specific, you will need to make changes to it as appropriate for your usage. The config file changes are described in greater detail below.

Next, `cd` to the analysis directory and create symbolic links to the following:

- The viral-ngs virtual environment:
  ```
  ln -s /path/to/venv-viral-ngs venv
  ```
- The viral-ngs project, checked out from GitHub or extracted from a version-tagged archive:
  ```
  ln -s /path/to/viral-ngs bin
  ```

Within the analysis directory, create the directories and files used by the Snakemake pipeline:

```
data/
  00_raw/
  01_cleaned/
  01_per_sample/
  02_align_to_self/
  02_assembly/
  03_align_to_ref/
  03_interhost/
  04_intrahost/
log/
reports/
tmp/
```

The directory structure created needs to match the locations specified in `config.yaml`.

Adding input data

- Copy each of the raw sample bam files to the 00_raw/ directory and ensure the file names follow the convention of {sample}.bam.

- Create a file, samples-depletion.txt, to list all of the samples that should be run through the depletion pipeline, with one sample name per line as {sample}, following the format of the input bam file: {sample}.bam. For example, if you copied a file called “G1190.bam” into 00_raw/, then samples-depletion.txt would contain the line:

 G1190

- Create a file, samples-assembly.txt, to list all of the samples that should be run through the assembly pipeline.

- Create a file, samples-runs.txt, to list all of the samples that should be run through the interhost analysis pipeline.

- Create a blank file, samples-assembly-failures.txt, that may be filled in later.

Modifying the config.yaml file

Minimal modification to the config file is necessary, though there are a few things you need to specify:

An email address for when the pipeline fetches reference data from the NCBI via their Entrez API:

```yaml
email_point_of_contact_for_ncbi: "someone@example.com"
```

The path to the depletion databases to be used by BMTagger, along with the file prefixes of the specific databases to use. The process for creating BMTagger depletion databases is described in the NIH BMTagger docs.

```yaml
bmtagger_db_dir: "/path/to/depletion_databases"
bmtagger_dbs_remove:
  - "hg19"
  - "GRCh37.68_ncRNA-GRCh37.68_transcripts-HS_rRNA_mitRNA"
  - "metagenomics_contaminants_v3"
```

Pre-built depletion databases are available in both *.tar.gz and *.lz4 format, for removing human reads and common metagenomic contaminants:

- GRCh37.68 ncRNA-GRCh37.68 transcripts-HS_rRNA_mitRNA.tar.gz (*.lz4)
- hg19.tar.gz (*.lz4)
- metagenomics_contaminants_v3.tar.gz (*.lz4)

Note that these databases must be extracted prior to use.

In addition to the databases used by BMTagger, you will need to specify the location and file prefix of the BLAST database to be used for depletion. The process for creating the BLAST database is described in the NIH BLAST docs, and on this website from the University of Oxford.

```yaml
blast_db_dir: "/path/to/depletion_databases"
blast_db_remove: "metag_v3.ncRNA.mRNA.mitRNA.consensus"
```

A pre-built depletion database is also available for BLAST:

- metag_v3.ncRNA.mRNA.mitRNA.consensus.tar.gz (*.lz4)
Note that this database must be extracted prior to use.

Additional databases are needed to perform metagenomic classification using Kraken, Diamond, or Krona.

\[
\begin{align*}
\text{kraken.db:} & \quad "/\text{path/to/kraken_full_20150910}" \\
\text{diamond.db:} & \quad "/\text{path/to/diamond_db/nr}" \\
\text{krona.db:} & \quad "/\text{path/to/krona}"
\end{align*}
\]

Pre-built databases for Kraken, Diamond, and Krona are available:

- kraken.ercc.db 20160718.tar.gz including ERCC spike-in RNA seqs (*.lz4)
- kraken.db.tar.gz (*.lz4)
- krona.taxonomy_20160502.tar.gz (*.lz4)
- nr.dmnd.gz (*.lz4)

Note that these databases must be extracted prior to use.

An array of the NCBI GenBank CoreNucleotide accessions for the sequences comprising the reference genome to be used for contig assembly as well as for interhost and intrahost variant analysis. In addition, you will need to specify a file prefix to be used to represent the full reference genome file used downstream.

\[
\begin{align*}
\text{accessions_for_ref_genome_build:} & \quad "\text{KJ660346.2}"
\end{align*}
\]

An optional file containing a list of accessions may be specified for filtering reads via LAST. This is intended to narrow to a genus. If this file is not provided, viral-ngs defaults to using the accessions specified for the reference genome.

\[
\begin{align*}
\text{accessions_file_for_lastal_db_build:} & \quad "/\text{path/to/lastal_accessions.txt}"
\end{align*}
\]

A FASTA file to be used by Trimmomatic during assembly to remove contaminants from reads:

\[
\begin{align*}
\text{trim_clip_db:} & \quad "/\text{path/to/depletion_databases/contaminants.fasta}"
\end{align*}
\]

Pre-built databases for Trimmomatic:

- contaminants.fasta.tar.gz (*.lz4)

A FASTA file containing spike-ins to be reported:

\[
\begin{align*}
\text{spikeins_db:} & \quad "/\text{path/to/references/ercc_spike-ins.fasta}"
\end{align*}
\]

Modifying the Snakefile

Depending on the state of your input data, and where in the pipeline it may enter, it may be necessary to omit certain processing steps. For example, if your sequencing center has already demultiplexed your data and no demultiplexing is needed, you can comment out the following line in the Snakefile:

\[
\text{include: os.path.join(pipesDir, 'demux.rules')}
\]

1.5.3 Running the pipeline

Configuring for your compute platform
Running the pipeline directly

After the above setup is complete, run the pipeline directly by calling `snakemake` within the analysis directory.

When things go wrong

The pipeline may fail with errors during execution, usually while generating assemblies with Trinity. If this occurs, examine the output, add the failing sample names to `samples-assembly-failures.txt`, keeping the good ones in `samples-assembly.txt`, and re-run the pipeline. Due to sample degradation prior to sequencing in the wet lab, not all samples have the integrity to complete the pipeline, and it may necessary to skip over these samples by adding them to `samples-assembly-failures.txt`.

1.5.4 Assembly of pre-filtered reads

1.5.5 Taxonomic filtration of raw reads

1.5.6 Starting from Illumina BCL directories

When starting from Illumina run directories, the viral-ngs Snakemake pipeline can demultiplex raw BCL files, and merge samples from multiple flowcell lanes or libraries. To use viral-ngs in this way, create the following files:

`flowcells.txt` (example below): A tab-delimited file describing the flowcells to demultiplex, as well as the lane to use, a path to the file listing the barcodes used in the lane, the `bustard_dir` (the run directory as written by an Illumina sequencer), and an optional column for `max_mismatches`, which specifies how many bases are allowed to differ for a read to be assigned to a particular barcode (default: 0). The column `max_mismatches` may be omitted, including its header.

```
flowcell lane barcode_file bustard_dir max_mismatches
H32G3ADxy 1 /path/to/barcodes.txt /path/to/illumina/run/directory/run_H32G3ADxy 1
H32G3ADxy 2 /path/to/barcodes.txt /path/to/illumina/run/directory/run_H32G3ADxy 2
AKJ6R 1 /path/to/barcodes.txt /path/to/illumina/run/directory/run_AKJ6R
```

`barcodes.txt` (example below): A tab-delimited file describing the barcodes used for a given sample, along with a library ID.

```
sample barcode_1 barcode_2 library_id_per_sample
41C TAAGGCGA TATCCTCT AP2
21P CGTACTAG TATCCTCT AP2
42C AGGCAGAA TATCCTCT AP2
41P TCCTGAGC TATCCTCT AP2
42P GGACTCCT TATCCTCT AP2
61C TAGGCATG TATCCTCT AP2
61P CTCTCTAC AGAGTAGA AP2
62C CAGAGAGG AGAGTAGA AP2
62P GCTACGCT AGAGTAGA AP2
142C CGAGGCTG AGAGTAGA AP2
WATERCTL AAGGGCA AGAGTAGA AP2
```

`samples-depletion.txt`: the list of sample names to deplete as described above.